911 resultados para Branch and bound method
Resumo:
In search of a meaningful stress indicator for Fucus vesiculosus we found that the often used quantitative determination procedures for the polysaccharide laminarin (beta-1,3-glucan) result in different kind of problems, uncertainties and limitations. This chemical long-term storage form of carbon enables perennial brown algae in seasonally fluctuating ecosystems to uncouple growth from photosynthesis. Because of this high ecological relevance a reliable and precise method for determination and quantification of laminarin is needed. Therefore, a simple, cold water extraction method coupled to a new quantitative liquid chromatography-mass spectrometrical method (LC-MS) was developed. Laminarin was determined in nine out of twelve brown algal species, and its expected typical molar mass distribution of 2000-7000 Da was confirmed. Furthermore, laminarin consisted of a complex mixture of different chemical forms, since fifteen chemical laminarin species with distinct molecular weights were measured in nine species of brown algae. Laminarin concentrations in the algal tissues ranged from 0.03 to 0.86% dry weight (DW). The direct chemical characterization and quantification of laminarin by LC-MS represents a powerful method to verify the biochemical and ecological importance of laminarin for brown algae. Single individuals of Laminaria hyperborea, L. digitata, Saccharina latissima, F. serratus, F. vesiculosus, F. spiralis, Himanthalia elongata, Cystoseira tamariscifolia, Pelvetia canaliculata, Ascophyllum nodosum, Halidrys siliquosa and Dictyota dichotoma were collected in fall (18.11.2013) during spring low tide from the shore of Finavarra, Co. Clare, west coast of Ireland (53° 09' 25'' N, 09° 06' 58'' W). After sampling, the different algae were immediately transported to the lab, lyophilized and sent to the University of Rostock. Laminarin was extracted with cold ultrapure water from the algal samples. Before extraction they were ground to < 1 mm grain size with an analytical mill (Ika MF 10 Basic). The algal material (approx. 1.5 g DW) was extracted in ultrapure water (8 mL) on a shaker (250 rpm) for 5 h. After the addition of surplus ultrapure water (4 mL) and shaking manually, 1 mL of the sample was filter centrifuged (45 µm) at 14,000 rpm (Hettich Mikro 22 R). The slightly viscous supernatant was free of suspended material and converted into a microvial (300 µL) for further analysis. The extracts were analyzed using liquid chromatography-mass spectrometry (LC-MS) analysis (LTQ Velos Pro ion trap spectrometer with Accela HPLC, Thermo Scientific). Laminarin species were separated on a KinetexTM column (2.6 µm C18, 150 x 3 mm). The mobile phase was 90 % ultrapure water and 10 % acetonitrile, run isocratically at a flow rate of 0.2 mL min-1. MS was working in ESI negative ion mode in a mass range of 100 - 4000 amu. Glucose contents were determined after extraction using high-performance liquid chromatography (HPLC). Extracted samples were analyzed in an HPLC (SmartLine, Knauer GmbH) equipped with a SUPELCOGELTM Ca column (30 x 7,8 mm without preColumn) and RI-detector (S2300 PDA S2800). Water was used as eluent at a flow rate of 0.8 mL min-1 at 75 °C. Glucose was quantified by comparison of the retention time and peak area with standard solutions using ChromGate software. Mannitol was extracted from three subsamples of 10-20 mg powdered alga material (L. hyperborea, L. digitata, S. latissima, F. serratus, F. vesiculosus, F. spiralis, H. elongata, P. canaliculata, A. nodosum, H. siliquosa) and quantified, following the HPLC method described by Karsten et al. (1991). For analyzing carbon and nitrogen contents, dried algal material was ground to powder and three subsamples of 2 mg from each alga thalli were loaded and packed into tin cartridges (6×6×12 mm). The packages were combusted at 950 °C and the absolute contents of C and N were automatically quantified in an elemental analyzer (Elementar Vario EL III, Germany) using acetanilide as standard according to Verardo et al. (1990).
Resumo:
Doubled haploid onion (Allium cepa L.) plants allow the production of completely homozygous lines for a later production of hybrids. The haploid plants are normally produced using in vitro gynogenesis. The obtained haploid plantlets must be treated with different agents for doubling chromosomes. It is necessary to adjust the concentration and the length of treatment of the doubling agent. In this case, the effect of 250 and 500 mg.L-1 colchicine and 15.2; 30 and 60 mg.L- 1 amiprophos-methyl during 24 and 48 h was assessed over the rate of onion haploid plantlets chromosome doubling. The best duplication treatment was 250 mg.L-1 colchicine for 48 h, which yielded 100% of doubled haploid plants. On the other hand, a positive correlation resulted from the ploidy level and stomatal size, and a negative correlation between the level of ploidy and stomatal density. Significant differences between the stomatal length, width and density in haploid and doubled haploid plantlets were observed. An economical and quick method to test ploidy level in onion plantlets is proposed through the measurement of stomatal size and density.
Resumo:
(preliminary) Exchanges of carbon, water and energy between the land surface and the atmosphere are monitored by eddy covariance technique at the ecosystem level. Currently, the FLUXNET database contains more than 500 sites registered and up to 250 of them sharing data (Free Fair Use dataset). Many modelling groups use the FLUXNET dataset for evaluating ecosystem model's performances but it requires uninterrupted time series for the meteorological variables used as input. Because original in-situ data often contain gaps, from very short (few hours) up to relatively long (some months), we develop a new and robust method for filling the gaps in meteorological data measured at site level. Our approach has the benefit of making use of continuous data available globally (ERA-interim) and high temporal resolution spanning from 1989 to today. These data are however not measured at site level and for this reason a method to downscale and correct the ERA-interim data is needed. We apply this method on the level 4 data (L4) from the LaThuile collection, freely available after registration under a Fair-Use policy. The performances of the developed method vary across sites and are also function of the meteorological variable. On average overall sites, the bias correction leads to cancel from 10% to 36% of the initial mismatch between in-situ and ERA-interim data, depending of the meteorological variable considered. In comparison to the internal variability of the in-situ data, the root mean square error (RMSE) between the in-situ data and the un-biased ERA-I data remains relatively large (on average overall sites, from 27% to 76% of the standard deviation of in-situ data, depending of the meteorological variable considered). The performance of the method remains low for the Wind Speed field, in particular regarding its capacity to conserve a standard deviation similar to the one measured at FLUXNET stations.
Resumo:
In order to assess recent submarine volcanic contributions to the sediments from the active Kolbeinsey Ridge, surface samples were analyzed chemically. The contribution of major and trace elements studied differ within the study area. A statistical analysis of the geochemical variables using factor analysis and cluster method allows to distinguish possible sample groups. Cluster method identifies three distinct sediment groups located in different areas of sedimentation. Group 1 is characterized by highest contents of Fe2O3, V, Co, Ni, Cu and Zn demonstrating the input of volcaniclastic material. Group 2 comprises high values of CaCO3, CaO and Sr representing biogenic carbonate. Group 3 is characterized by the elements K, Rb, Cs, La and Pb indicating the terrigenous component. The absolute percentage of the volcanic, biogenic and terrigenous components in the bulk sediments was calculated by using a normative sediment method. The highest volcanic component (> 60% on a carbonate free basis) is found on the ridge crest. The biogenic component is highest (10-30%) in the eastern part of the Spar Fracture Zone influenced by the East Iceland Current. Samples from the western and southeastern region of the study area contain more than 90% of terrigenous component which appears to be mainly controlled by input of ice-rafted debris.
Resumo:
The application of quantitative and semiquantitative methods to assemblage data from dinoflagellate cysts shows potential for interpreting past environments, both in terms of paleotemperature estimates and in recognizing water masses and circulation patterns. Estimates of winter sea-surface temperature (WSST) were produced by using the Impagidinium Index (II) method, and by applying a winter-temperature transfer function (TFw). Estimates of summer sea-surface temperature (SSST) were produced by using a summer-temperature transfer function (TFs), two methods based on a temperature-distribution chart (ACT and ACTpo), and a method based on the ratio of gonyaulacoid:protoperidinioid specimens (G:P). WSST estimates from the II and TFw methods are in close agreement except where Impagidinium species are sparse. SSST estimates from TFs are more variable. The value of the G:P ratio for the Pliocene data in this paper is limited by the apparent sparsity of protoperidinioids, which results in monotonous SSST estimates of 14-26°C. The ACT methods show two biases for the Pliocene data set: taxonomic substitution may force 'matches' yielding incorrect temperature estimates, and the method is highly sensitive to the end-points of species distributions. Dinocyst assemblage data were applied to reconstruct Pliocene sea-surface temperatures between 3.5-2.5 Ma from DSDP Hole 552A, and ODP Holes 646B and 642B, which are presently located beneath cold and cool-temperate waters north of 56°N. Our initial results suggest that at 3.0 Ma, WSSTs were a few degrees C warmer than the present and that there was a somewhat reduced north-south temperature gradient. For all three sites, it is likely that SSSTs were also warmer, but by an unknown, perhaps large, amount. Past oceanic circulation in the North Atlantic was probably different from the present.
Resumo:
Distributions of free and bound n-alkanes, n-alkanoic acids, and n-alkanols were determined in order to compare the character of organic matter contained in organic-carbon-rich sediments from two sites sampled by the hydraulic piston corer. Two diatomaceous debris-flow samples of Pleistocene age were obtained from Hole 530B in the Angola Basin. A sample of bioturbated Pleistocene diatomaceous clay and another of bioturbated late Miocene nannofossil clay were collected from Hole 532 on the Walvis Ridge. Geolipid distributions of all samples contain large terrigenous contributions and lesser amounts of marine components. Similarities in organic matter contents of Hole 530B and Hole 532 sediments suggest that a common depositional setting, probably on the Walvis Ridge, was the original source of these sediments through Quaternary, and possibly late Neogene, times and that downslope relocation of these biogenic deposits has frequently occurred.
Resumo:
Date-32 is a fast and easily used computer program developed to date Quaternary deep-sea cores by associating variations in the earth's orbit with recurring oscillations in core properties, such as carbonate content or isotope composition. Starting with known top and bottom dates, distortions in the periodicities of the core properties due to varying sedimentation rates are realigned by fast Fourier analysis so as to maximise the spectral energy density at the orbital frequencies. This allows age interpolation to all parts of the core to an accuracy of 10 kyrs, or about 1.5% of the record duration for a typical Brunhes sequence. The influence of astronomical forcing is examined and the method is applied to provide preliminary dates in a high-resolution Brunhes record from DSDP Site 594 off southeastern New Zealand.
Resumo:
Organic-matter-rich Upper Cretaceous claystones from DSDP Hole 603B, lower continental rise, had organic carbon values ranging from 1.7 to 13.7%, C/N ratios from 32 to 72, and d13C values from -23.5 to -27.1 per mil. Lipid class maxima for the unbound alkanes (C29 and C31), unbound fatty acids (C28 and C30), and bound fatty acids (C24, C26 , and C28) and the strong odd-carbon and even-carbon preferences, respectively, suggested that the organic matter in these sediments was partially the result of input from continental plant waxes. Transport of the organic-matter-rich sediments to the deep sea from the near-shore environment probably resulted from turbiditic flow under oxygen-stressed conditions.
Resumo:
Anthropogenic ocean acidification is likely to have negative effects on marine calcifying organisms, such as shelled pteropods, by promoting dissolution of aragonite shells. Study of shell dissolution requires an accurate and sensitive method for assessing shell damage. Shell dissolution was induced through incubations in CO2 enriched seawater for between 4 and 14 days. We describe a procedure that allows the level of dissolution to be assessed and classified into three main types: Type I with partial dissolution of the prismatic layer; Type II with exposure of underlying crossed-lamellar layer, and Type III, where crossed-lamellar layer shows signs of dissolution. Levels of dissolution showed a good correspondence to the incubation conditions, with the most severe damage found in specimens held for 14 d in undersaturated condition (Ohm ~ 0.8). This methodology enables the response of small pelagic calcifiers to acidified conditions to be detected at an early stage, thus making pteropods a valuable bioindicator of future ocean acidification.
Resumo:
This article presents a probabilistic method for vehicle detection and tracking through the analysis of monocular images obtained from a vehicle-mounted camera. The method is designed to address the main shortcomings of traditional particle filtering approaches, namely Bayesian methods based on importance sampling, for use in traffic environments. These methods do not scale well when the dimensionality of the feature space grows, which creates significant limitations when tracking multiple objects. Alternatively, the proposed method is based on a Markov chain Monte Carlo (MCMC) approach, which allows efficient sampling of the feature space. The method involves important contributions in both the motion and the observation models of the tracker. Indeed, as opposed to particle filter-based tracking methods in the literature, which typically resort to observation models based on appearance or template matching, in this study a likelihood model that combines appearance analysis with information from motion parallax is introduced. Regarding the motion model, a new interaction treatment is defined based on Markov random fields (MRF) that allows for the handling of possible inter-dependencies in vehicle trajectories. As for vehicle detection, the method relies on a supervised classification stage using support vector machines (SVM). The contribution in this field is twofold. First, a new descriptor based on the analysis of gradient orientations in concentric rectangles is dened. This descriptor involves a much smaller feature space compared to traditional descriptors, which are too costly for real-time applications. Second, a new vehicle image database is generated to train the SVM and made public. The proposed vehicle detection and tracking method is proven to outperform existing methods and to successfully handle challenging situations in the test sequences.
Resumo:
The Self-OrganizingMap (SOM) is a neural network model that performs an ordered projection of a high dimensional input space in a low-dimensional topological structure. The process in which such mapping is formed is defined by the SOM algorithm, which is a competitive, unsupervised and nonparametric method, since it does not make any assumption about the input data distribution. The feature maps provided by this algorithm have been successfully applied for vector quantization, clustering and high dimensional data visualization processes. However, the initialization of the network topology and the selection of the SOM training parameters are two difficult tasks caused by the unknown distribution of the input signals. A misconfiguration of these parameters can generate a feature map of low-quality, so it is necessary to have some measure of the degree of adaptation of the SOM network to the input data model. The topologypreservation is the most common concept used to implement this measure. Several qualitative and quantitative methods have been proposed for measuring the degree of SOM topologypreservation, particularly using Kohonen's model. In this work, two methods for measuring the topologypreservation of the Growing Cell Structures (GCSs) model are proposed: the topographic function and the topology preserving map
Resumo:
A new and effective method for reduction of truncation errors in partial spherical near-field (SNF) measurements is proposed. The method is useful when measuring electrically large antennas, where the measurement time with the classical SNF technique is prohibitively long and an acquisition over the whole spherical surface is not practical. Therefore, to reduce the data acquisition time, partial sphere measurement is usually made, taking samples over a portion of the spherical surface in the direction of the main beam. But in this case, the radiation pattern is not known outside the measured angular sector as well as a truncation error is present in the calculated far-field pattern within this sector. The method is based on the Gerchberg-Papoulis algorithm used to extrapolate functions and it is able to extend the valid region of the calculated far-field pattern up to the whole forward hemisphere. To verify the effectiveness of the method, several examples are presented using both simulated and measured truncated near-field data.
Resumo:
The results obtained after incorporating the competence “creativity” to the subject Technical Drawing of the first course of the Degree in Forestry, Technical University of Madrid, are presented in this study.At first, learning activities which could serve two functions at the same time -developing students’ creativity and developing other specific competences of the subject- were considered. Besides, changes in the assessment procedure were made and a method which analyzes two aspects of the assessment of the competence creativity was established. On the one hand, the products are evaluated by analyzing the outcomes obtained by students in the essays suggested and by establishing a parameter to assess the creativity expressed in those essays. On the other, an assessment of the student is directly carried out through a psychometric test which has been previously chosen by the team.Moreover, these results can be applied to similar or could be of general application
Resumo:
Background Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals. Results Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall. Conclusions The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions.
Resumo:
Background Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals. Results Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall. Conclusions The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions.