939 resultados para Brain anatomy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a mathematical model linking changes in cerebral blood flow, blood volume and the blood oxygenation state in response to stimulation. The model has three compartments to take into account the fact that the cerebral blood flow and volume as measured concurrently using laser Doppler flowmetry and optical imaging spectroscopy have contributions from the arterial, capillary as well as the venous compartments of the vasculature. It is an extension to previous one-compartment hemodynamic models which assume that the measured blood volume changes are from the venous compartment only. An important assumption of the model is that the tissue oxygen concentration is a time varying state variable of the system and is driven by the changes in metabolic demand resulting from changes in neural activity. The model takes into account the pre-capillary oxygen diffusion by flexibly allowing the saturation of the arterial compartment to be less than unity. Simulations are used to explore the sensitivity of the model and to optimise the parameters for experimental data. We conclude that the three-compartment model was better than the one-compartment model at capturing the hemodynamics of the response to changes in neural activation following stimulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The temporal relationship between changes in cerebral blood flow (CBF) and cerebral blood volume (CBV) is important in the biophysical modeling and interpretation of the hemodynamic response to activation, particularly in the context of magnetic resonance imaging and the blood oxygen level-dependent signal. Grubb et al. (1974) measured the steady state relationship between changes in CBV and CBF after hypercapnic challenge. The relationship CBV proportional to CBFPhi has been used extensively in the literature. Two similar models, the Balloon (Buxton et al., 1998) and the Windkessel (Mandeville et al., 1999), have been proposed to describe the temporal dynamics of changes in CBV with respect to changes in CBF. In this study, a dynamic model extending the Windkessel model by incorporating delayed compliance is presented. The extended model is better able to capture the dynamics of CBV changes after changes in CBF, particularly in the return-to-baseline stages of the response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A recent nonlinear system by Friston et al. (2000. NeuroImage 12: 466–477) links the changes in BOLD response to changes in neural activity. The system consists of five subsystems, linking: (1) neural activity to flow changes; (2) flow changes to oxygen delivery to tissue; (3) flow changes to changes in blood volume and venous outflow; (4) changes in flow, volume, and oxygen extraction fraction to deoxyhemoglobin changes; and finally (5) volume and deoxyhemoglobin changes to the BOLD response. Friston et al. exploit, in subsystem 2, a model by Buxton and Frank coupling flow changes to changes in oxygen metabolism which assumes tissue oxygen concentration to be close to zero. We describe below a model of the coupling between flow and oxygen delivery which takes into account the modulatory effect of changes in tissue oxygen concentration. The major development has been to extend the original Buxton and Frank model for oxygen transport to a full dynamic capillary model making the model applicable to both transient and steady state conditions. Furthermore our modification enables us to determine the time series of CMRO2 changes under different conditions, including CO2 challenges. We compare the differences in the performance of the “Friston system” using the original model of Buxton and Frank and that of our model. We also compare the data predicted by our model (with appropriate parameters) to data from a series of OIS studies. The qualitative differences in the behaviour of the models are exposed by different experimental simulations and by comparison with the results of OIS data from brief and extended stimulation protocols and from experiments using hypercapnia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The validity of the linguistic relativity principle continues to stimulate vigorous debate and research. The debate has recently shifted from the behavioural investigation arena to a more biologically grounded field, in which tangible physiological evidence for language effects on perception can be obtained. Using brain potentials in a colour oddball detection task with Greek and English speakers, a recent study suggests that language effects may exist at early stages of perceptual integration [Thierry, G., Athanasopoulos, P., Wiggett, A., Dering, B., & Kuipers, J. (2009). Unconscious effects of language-specific terminology on pre-attentive colour perception. Proceedings of the National Academy of Sciences, 106, 4567–4570]. In this paper, we test whether in Greek speakers exposure to a new cultural environment (UK) with contrasting colour terminology from their native language affects early perceptual processing as indexed by an electrophysiological correlate of visual detection of colour luminance. We also report semantic mapping of native colour terms and colour similarity judgements. Results reveal convergence of linguistic descriptions, cognitive processing, and early perception of colour in bilinguals. This result demonstrates for the first time substantial plasticity in early, pre-attentive colour perception and has important implications for the mechanisms that are involved in perceptual changes during the processes of language learning and acculturation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evidence suggests that flavonoid-rich foods are capable of inducing improvements in memory and cognition in animals and humans. However, there is a lack of clarity concerning whether flavonoids are the causal agents in inducing such behavioral responses. Here we show that supplementation with pure anthocyanins or pure flavanols for 6 weeks, at levels similar to that found in blueberry (2% w/w), results in an enhancement of spatial memory in 18 month old rats. Pure flavanols and pure anthocyanins were observed to induce significant improvements in spatial working memory (p = 0.002 and p = 0.006 respectively), to a similar extent to that following blueberry supplementation (p = 0.002). These behavioral changes were paralleled by increases in hippocampal brain-derived neurotrophic factor (R = 0.46, p<0.01), suggesting a common mechanism for the enhancement of memory. However, unlike protein levels of BDNF, the regional enhancement of BDNF mRNA expression in the hippocampus appeared to be predominantly enhanced by anthocyanins. Our data support the claim that flavonoids are likely causal agents in mediating the cognitive effects of flavonoid-rich foods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this communication, we describe a new method which has enabled the first patterning of human neurons (derived from the human teratocarcinoma cell line (hNT)) on parylene-C/silicon dioxide substrates. We reveal the details of the nanofabrication processes, cell differentiation and culturing protocols necessary to successfully pattern hNT neurons which are each key aspects of this new method. The benefits in patterning human neurons on silicon chip using an accessible cell line and robust patterning technology are of widespread value. Thus, using a combined technology such as this will facilitate the detailed study of the pathological human brain at both the single cell and network level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the use of 800nm femtosecond infrared (IR) and 248nm nanosecond ultraviolet (UV) laser radiation in performing ablative micromachining of parylene-C on SiO2 substrates for the patterning of human hNT astrocytes. Results are presented that support the validity of using IR laser ablative micromachining for patterning human hNT astrocytes cells while UV laser radiation produces photo-oxidation of the parylene-C and destroys cell patterning. The findings demonstrate how IR laser ablative micromachining of parylene-C on SiO2 substrates can offer a low cost, accessible alternative for rapid prototyping, high yield cell patterning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SUMOylation (small ubiquitin-like modifier conjugation) is an important post-translational modification which is becoming increasingly implicated in the altered protein dynamics associated with brain ischemia. The function of SUMOylation in cells undergoing ischemic stress and the identity of small ubiquitin-like modifier (SUMO) targets remain in most cases unknown. However, the emerging consensus is that SUMOylation of certain proteins might be part of an endogenous neuroprotective response. This review brings together the current understanding of the underlying mechanisms and downstream effects of SUMOylation in brain ischemia, including processes such as autophagy, mitophagy and oxidative stress. We focus on recent advances and controversies regarding key central nervous system proteins, including those associated with the nucleus, cytoplasm and plasma membrane, such as glucose transporters (GLUT1, GLUT4), excitatory amino acid transporter 2 glutamate transporters, K+ channels (K2P1, Kv1.5, Kv2.1), GluK2 kainate receptors, mGluR8 glutamate receptors and CB1 cannabinoid receptors, which are reported to be SUMO-modified. A discussion of the roles of these molecular targets for SUMOylation could play following an ischemic event, particularly with respect to their potential neuroprotective impact in brain ischemia, is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human minds often wander away from their immediate sensory environment. It remains unknown whether such mind wandering is unsystematic or whether it lawfully relates to an individual’s tendency to attend to salient stimuli such as pain and their associated brain structure/function. Studies of pain–cognition interactions typically examine explicit manipulation of attention rather than spontaneous mind wandering. Here we sought to better represent natural fluctuations in pain in daily life, so we assessed behavioral and neural aspects of spontaneous disengagement of attention from pain. We found that an individual’s tendency to attend to pain related to the disruptive effect of pain on his or her cognitive task performance. Next, we linked behavioral findings to neural networks with strikingly convergent evidence from functional magnetic resonance imaging during pain coupled with thought probes of mind wandering, dynamic resting state activity fluctuations, and diffusion MRI. We found that (i) pain-induced default mode network (DMN) deactivations were attenuated during mind wandering away from pain; (ii) functional connectivity fluctuations between the DMN and periaqueductal gray (PAG) dynamically tracked spontaneous attention away from pain; and (iii) across individuals, stronger PAG–DMN structural connectivity and more dynamic resting state PAG–DMN functional connectivity were associated with the tendency to mind wander away from pain. These data demonstrate that individual tendencies to mind wander away from pain, in the absence of explicit manipulation, are subserved by functional and structural connectivity within and between default mode and antinociceptive descending modulation networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a new reconstruction method for diffuse optical tomography using reduced-order models of light transport in tissue. The models, which directly map optical tissue parameters to optical flux measurements at the detector locations, are derived based on data generated by numerical simulation of a reference model. The reconstruction algorithm based on the reduced-order models is a few orders of magnitude faster than the one based on a finite element approximation on a fine mesh incorporating a priori anatomical information acquired by magnetic resonance imaging. We demonstrate the accuracy and speed of the approach using a phantom experiment and through numerical simulation of brain activation in a rat's head. The applicability of the approach for real-time monitoring of brain hemodynamics is demonstrated through a hypercapnic experiment. We show that our results agree with the expected physiological changes and with results of a similar experimental study. However, by using our approach, a three-dimensional tomographic reconstruction can be performed in ∼3  s per time point instead of the 1 to 2 h it takes when using the conventional finite element modeling approach

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that the affective experience of touch and the sight of touch can be modulated by cognition, and investigate in an fMRI study where top-down cognitive modulations of bottom-up somatosensory and visual processing of touch and its affective value occur in the human brain. The cognitive modulation was produced by word labels, 'Rich moisturizing cream' or 'Basic cream', while cream was being applied to the forearm, or was seen being applied to a forearm. The subjective pleasantness and richness were modulated by the word labels, as were the fMRI activations to touch in parietal cortex area 7, the insula and ventral striatum. The cognitive labels influenced the activations to the sight of touch and also the correlations with pleasantness in the pregenual cingulate/orbitofrontal cortex and ventral striatum. Further evidence of how the orbitofrontal cortex is involved in affective aspects of touch was that touch to the forearm [which has C fiber Touch (CT) afferents sensitive to light touch] compared with touch to the glabrous skin of the hand (which does not) revealed activation in the mid-orbitofrontal cortex. This is of interest as previous studies have suggested that the CT system is important in affiliative caress-like touch between individuals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To examine the neural circuitry involved in food craving, in making food particularly appetitive and thus in driving wanting and eating, we used fMRI to measure the response to the flavour of chocolate, the sight of chocolate and their combination in cravers vs. non-cravers. Statistical parametric mapping (SPM) analyses showed that the sight of chocolate produced more activation in chocolate cravers than non-cravers in the medial orbitofrontal cortex and ventral striatum. For cravers vs. non-cravers, a combination of a picture of chocolate with chocolate in the mouth produced a greater effect than the sum of the components (i.e. supralinearity) in the medial orbitofrontal cortex and pregenual cingulate cortex. Furthermore, the pleasantness ratings of the chocolate and chocolate-related stimuli had higher positive correlations with the fMRI blood oxygenation level-dependent signals in the pregenual cingulate cortex and medial orbitofrontal cortex in the cravers than in the non-cravers. To our knowledge, this is the first study to show that there are differences between cravers and non-cravers in their responses to the sensory components of a craved food in the orbitofrontal cortex, ventral striatum and pregenual cingulate cortex, and that in some of these regions the differences are related to the subjective pleasantness of the craved foods. Understanding individual differences in brain responses to very pleasant foods helps in the understanding of the mechanisms that drive the liking for specific foods and thus intake of those foods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Umami taste is produced by glutamate acting on a fifth taste system. However, glutamate presented alone as a taste stimulus is not highly pleasant, and does not act synergistically with other tastes (sweet, salt, bitter and sour). We show here that when glutamate is given in combination with a consonant, savory, odour (vegetable), the resulting flavor can be much more pleasant. Moreover, we showed using functional brain imaging with fMRI that the glutamate taste and savory odour combination produced much greater activation of the medial orbitofrontal cortex and pregenual cingulate cortex than the sum of the activations by the taste and olfactory components presented separately. Supralinear effects were much less (and significantly less) evident for sodium chloride and vegetable odour. Further, activations in these brain regions were correlated with the pleasantness and fullness of the flavor, and with the consonance of the taste and olfactory components. Supralinear effects of glutamate taste and savory odour were not found in the insular primary taste cortex. We thus propose that glutamate acts by the nonlinear effects it can produce when combined with a consonant odour in multimodal cortical taste-olfactory convergence regions. We propose the concept that umami can be thought of as a rich and delicious flavor that is produced by a combination of glutamate taste and a consonant savory odour. Glutamate is thus a flavor enhancer because of the way that it can combine supralinearly with consonant odours in cortical areas where the taste and olfactory pathways converge far beyond the receptors.