963 resultados para Box-constrained optimization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An algorithm for solving nonlinear discrete time optimal control problems with model-reality differences is presented. The technique uses Dynamic Integrated System Optimization and Parameter Estimation (DISOPE), which achieves the correct optimal solution in spite of deficiencies in the mathematical model employed in the optimization procedure. A version of the algorithm with a linear-quadratic model-based problem, implemented in the C+ + programming language, is developed and applied to illustrative simulation examples. An analysis of the optimality and convergence properties of the algorithm is also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fundamental principle in data modelling is to incorporate available a priori information regarding the underlying data generating mechanism into the modelling process. We adopt this principle and consider grey-box radial basis function (RBF) modelling capable of incorporating prior knowledge. Specifically, we show how to explicitly incorporate the two types of prior knowledge: (i) the underlying data generating mechanism exhibits known symmetric property, and (ii) the underlying process obeys a set of given boundary value constraints. The class of efficient orthogonal least squares regression algorithms can readily be applied without any modification to construct parsimonious grey-box RBF models with enhanced generalisation capability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The combination of the synthetic minority oversampling technique (SMOTE) and the radial basis function (RBF) classifier is proposed to deal with classification for imbalanced two-class data. In order to enhance the significance of the small and specific region belonging to the positive class in the decision region, the SMOTE is applied to generate synthetic instances for the positive class to balance the training data set. Based on the over-sampled training data, the RBF classifier is constructed by applying the orthogonal forward selection procedure, in which the classifier structure and the parameters of RBF kernels are determined using a particle swarm optimization algorithm based on the criterion of minimizing the leave-one-out misclassification rate. The experimental results on both simulated and real imbalanced data sets are presented to demonstrate the effectiveness of our proposed algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There have been various techniques published for optimizing the net present value of tenders by use of discounted cash flow theory and linear programming. These approaches to tendering appear to have been largely ignored by the industry. This paper utilises six case studies of tendering practice in order to establish the reasons for this apparent disregard. Tendering is demonstrated to be a market orientated function with many subjective judgements being made regarding a firm's environment. Detailed consideration of 'internal' factors such as cash flow are therefore judged to be unjustified. Systems theory is then drawn upon and applied to the separate processes of estimating and tendering. Estimating is seen as taking place in a relatively sheltered environment and as such operates as a relatively closed system. Tendering, however, takes place in a changing and dynamic environment and as such must operate as a relatively open system. The use of sophisticated methods to optimize the value of tenders is then identified as being dependent upon the assumption of rationality, which is justified in the case of a relatively closed system (i.e. estimating), but not for a relatively open system (i.e. tendering).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a new system identification algorithm is introduced for Hammerstein systems based on observational input/output data. The nonlinear static function in the Hammerstein system is modelled using a non-uniform rational B-spline (NURB) neural network. The proposed system identification algorithm for this NURB network based Hammerstein system consists of two successive stages. First the shaping parameters in NURB network are estimated using a particle swarm optimization (PSO) procedure. Then the remaining parameters are estimated by the method of the singular value decomposition (SVD). Numerical examples including a model based controller are utilized to demonstrate the efficacy of the proposed approach. The controller consists of computing the inverse of the nonlinear static function approximated by NURB network, followed by a linear pole assignment controller.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental results of the temperature dependence of the nonlinear optical response of methyl red doped polymethylmethacrylate films in the range 20°C to 170°C are reported. It is found that the intensity of the phase conjugate signal resulting from degenerate four-wave mixing using pump and probe beams with parallel polarisation states increases dramatically on heating by a factor of ∼ 10, reaching a maximum at ∼ 100°C. The intensity of the phase conjugate signal for the case with crossed polarisation states of the pump and probe beams drops monotonically with increasing temperature. For both configurations the response time shortens with increasing temperature. The particular role of the polymer matrix in this temperature variation of the nonlinear optical response is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes an experimental application of constrained predictive control and feedback linearisation based on dynamic neural networks. It also verifies experimentally a method for handling input constraints, which are transformed by the feedback linearisation mappings. A performance comparison with a PID controller is also provided. The experimental system consists of a laboratory based single link manipulator arm, which is controlled in real time using MATLAB/SIMULINK together with data acquisition equipment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Constrained principal component analysis (CPCA) with a finite impulse response (FIR) basis set was used to reveal functionally connected networks and their temporal progression over a multistage verbal working memory trial in which memory load was varied. Four components were extracted, and all showed statistically significant sensitivity to the memory load manipulation. Additionally, two of the four components sustained this peak activity, both for approximately 3 s (Components 1 and 4). The functional networks that showed sustained activity were characterized by increased activations in the dorsal anterior cingulate cortex, right dorsolateral prefrontal cortex, and left supramarginal gyrus, and decreased activations in the primary auditory cortex and "default network" regions. The functional networks that did not show sustained activity were instead dominated by increased activation in occipital cortex, dorsal anterior cingulate cortex, sensori-motor cortical regions, and superior parietal cortex. The response shapes suggest that although all four components appear to be invoked at encoding, the two sustained-peak components are likely to be additionally involved in the delay period. Our investigation provides a unique view of the contributions made by a network of brain regions over the course of a multiple-stage working memory trial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supreme audit institutions (SAIs) have an important role in assessing value for money in the delivery of public services. Assessing value for money necessarily involves assessing counterfactuals: good value for money has been achieved if a policy could not reasonably have been delivered more efficiently, effectively, or economically. Operations research modelling has the potential to help in the assessment of these counterfactuals. However, is such modelling too arcane, complex, and technically burdensome for organisations that, like SAIs, operate in a time- and resource-constrained and politically charged environment? We report on three applications of modelling at the UK's SAI, the National Audit Office, in the context of studies on demand management in tax collection, end-of-life care, and health-care associated infections. In all cases, the models have featured in the audit reports and helped study teams come to a value-for-money judgment. We conclude that OR modelling is indeed a valuable addition to the value-for-money auditor's methodological tool box.

Relevância:

20.00% 20.00%

Publicador: