934 resultados para Box constrained minimization
Resumo:
It has been argued that poor productive performance is one of critical sources of stagnation of the African manufacturing sector, but firm-level empirical supports are limited. Using the inter-regional firm data of the garment industry, technical efficiency and its contribution to competitiveness measured as unit costs were compared between Kenyan and Bangladeshi firms. Our estimates indicated that there is no significant gap in the average technical efficiency of the two industries despite conservative estimation, although unit costs greatly differ between the two industries. Higher unit cost in Kenyan firms mainly stems from high labour cost, while impact of inefficiency is quite small. Productivity accounts little for the stagnation of garment industry in several African countries.
Resumo:
The implementation of abstract machines involves complex decisions regarding, e.g., data representation, opcodes, or instruction specialization levéis, all of which affect the final performance of the emulator and the size of the bytecode programs in ways that are often difficult to foresee. Besides, studying alternatives by implementing abstract machine variants is a time-consuming and error-prone task because of the level of complexity and optimization of competitive implementations, which makes them generally difficult to understand, maintain, and modify. This also makes it hard to genérate specific implementations for particular purposes. To ameliorate those problems, we propose a systematic approach to the automatic generation of implementations of abstract machines. Different parts of their definition (e.g., the instruction set or the infernal data and bytecode representation) are kept sepárate and automatically assembled in the generation process. Alternative versions of the abstract machine are therefore easier to produce, and variants of their implementation can be created mechanically, with specific characteristics for a particular application if necessary. We illustrate the practicality of the approach by reporting on an implementation of a generator of production-quality WAMs which are specialized for executing a particular fixed (set of) program(s). The experimental results show that the approach is effective in reducing emulator size.
Resumo:
Adaptive agents use feedback as a key strategy to cope with un- certainty and change in their environments. The information fed back from the sensorimotor loop into the control subsystem can be used to change four different elements of the controller: parameters associated to the control model, the control model itself, the functional organization of the agent and the functional realization of the agent. There are many change alternatives and hence the complexity of the agent’s space of potential configurations is daunting. The only viable alternative for space- and time-constrained agents —in practical, economical, evolutionary terms— is to achieve a reduction of the dimensionality of this configuration space. Emotions play a critical role in this reduction. The reduction is achieved by func- tionalization, interface minimization and by patterning, i.e. by selection among a predefined set of organizational configurations. This analysis lets us state how autonomy emerges from the integration of cognitive, emotional and autonomic systems in strict functional terms: autonomy is achieved by the closure of functional dependency. Emotion-based morphofunctional systems are able to exhibit complex adaptation patterns at a reduced cognitive cost. In this article we show a general model of how emotion supports functional adaptation and how the emotional biological systems operate following this theoretical model. We will also show how this model is also of applicability to the construction of a wide spectrum of artificial systems1.
Resumo:
The range for airframe configurations available for UAS is as diverse as those used for manned aircraft and more since the commercial risk in trying unorthodox solutions is less for the UAS manufacturer. This is principally because the UAS airframes are usually much smaller than the manned aircraft and operators are less likely to have a bias against unconventional configurations. One of these unconventional configurations is the box-wing, which is an unconventional solution for the design of the new UAS generation. The existence of two wings separated in different planes that are, however, significantly close together, means that the aerodynamic analysis by theoretical or computational methods is a difficult task, due to the considerable interference existing. Considering the fact that the flight of most UAS takes place at low Reynolds numbers, it is necessary to study the aerodynamics of the box wing configuration by testing different models in a wind tunnel to be able to obtain reasonable results. In the present work, the study is enhanced by varying not only the sweepback angles of the two wings, but also their position along the models’ fuselage. Certain models have shown being more efficient than others, pointing out that certain relative positions of wing exists that can improve the aerodynamics efficiency of the box wing configuration.