969 resultados para Bladder cancer, Bone morphogenetic protein-2, Inhibin-ßB, Transforming growth factor-beta pathway
Resumo:
Fibromuscular dysplasia (FMD) is a rare, nonatherosclerotic arterial disease for which the molecular basis is unknown. We comprehensively studied 47 subjects with FMD, including physical examination, spine magnetic resonance imaging, bone densitometry, and brain magnetic resonance angiography. Inflammatory biomarkers in plasma and transforming growth factor β (TGF-β) cytokines in patient-derived dermal fibroblasts were measured by ELISA. Arterial pathology other than medial fibrodysplasia with multifocal stenosis included cerebral aneurysm, found in 12.8% of subjects. Extra-arterial pathology included low bone density (P<0.001); early onset degenerative spine disease (95.7%); increased incidence of Chiari I malformation (6.4%) and dural ectasia (42.6%); and physical examination findings of a mild connective tissue dysplasia (95.7%). Screening for mutations causing known genetically mediated arteriopathies was unrevealing. We found elevated plasma TGF-β1 (P=0.009), TGF-β2 (P=0.004) and additional inflammatory markers, and increased TGF-β1 (P=0.0009) and TGF-β2 (P=0.0001) secretion in dermal fibroblast cell lines from subjects with FMD compared to age- and gender-matched controls. Detailed phenotyping of patients with FMD allowed us to demonstrate that FMD is a systemic disease with alterations in common with the spectrum of genetic syndromes that involve altered TGF-β signaling and offers TGF-β as a marker of FMD.
Resumo:
BACKGROUND Methylentetrahydrofolate reductase (MTHFR) plays a major role in folate metabolism and consequently could be an important factor for the efficacy of a treatment with 5-fluorouracil. Our aim was to evaluate the prognostic and predictive value of two well characterized constitutional MTHFR gene polymorphisms for primarily resected and neoadjuvantly treated esophagogastric adenocarcinomas. METHODS 569 patients from two centers were analyzed (gastric cancer: 218, carcinoma of the esophagogastric junction (AEG II, III): 208 and esophagus (AEG I): 143). 369 patients received neoadjuvant chemotherapy followed by surgery, 200 patients were resected without preoperative treatment. The MTHFR C677T and A1298C polymorphisms were determined in DNA from peripheral blood lymphozytes. Associations with prognosis, response and clinicopathological factors were analyzed retrospectively within a prospective database (chi-square, log-rank, cox regression). RESULTS Only the MTHFR A1298C polymorphisms had prognostic relevance in neoadjuvantly treated patients but it was not a predictor for response to neoadjuvant chemotherapy. The AC genotype of the MTHFR A1298C polymorphisms was significantly associated with worse outcome (p = 0.02, HR 1.47 (1.06-2.04). If neoadjuvantly treated patients were analyzed based on their tumor localization, the AC genotype of the MTHFR A1298C polymorphisms was a significant negative prognostic factor in patients with gastric cancer according to UICC 6th edition (gastric cancer including AEG type II, III: HR 2.0, 95% CI 1.3-2.0, p = 0.001) and 7th edition (gastric cancer without AEG II, III: HR 2.8, 95% CI 1.5-5.7, p = 0.003), not for AEG I. For both definitions of gastric cancer the AC genotype was confirmed as an independent negative prognostic factor in cox regression analysis. In primarily resected patients neither the MTHFR A1298C nor the MTHFR C677T polymorphisms had prognostic impact. CONCLUSIONS The MTHFR A1298C polymorphisms was an independent prognostic factor in patients with neoadjuvantly treated gastric adenocarcinomas (according to both UICC 6th or 7th definitions for gastric cancer) but not in AEG I nor in primarily resected patients, which confirms the impact of this enzyme on chemotherapy associated outcome.
Resumo:
AIMS/HYPOTHESIS Plasminogen activator inhibitor-1 (PAI-1) has been regarded as the main antifibrinolytic protein in diabetes, but recent work indicates that complement C3 (C3), an inflammatory protein, directly compromises fibrinolysis in type 1 diabetes. The aim of the current project was to investigate associations between C3 and fibrinolysis in a large cohort of individuals with type 2 diabetes. METHODS Plasma levels of C3, C-reactive protein (CRP), PAI-1 and fibrinogen were analysed by ELISA in 837 patients enrolled in the Edinburgh Type 2 Diabetes Study. Fibrin clot lysis was analysed using a validated turbidimetric assay. RESULTS Clot lysis time correlated with C3 and PAI-1 plasma levels (r = 0.24, p < 0.001 and r = 0.22, p < 0.001, respectively). In a multivariable regression model involving age, sex, BMI, C3, PAI-1, CRP and fibrinogen, and using log-transformed data as appropriate, C3 was associated with clot lysis time (regression coefficient 0.227 [95% CI 0.161, 0.292], p < 0.001), as was PAI-1 (regression coefficient 0.033 [95% CI 0.020, 0.064], p < 0.05) but not fibrinogen (regression coefficient 0.003 [95% CI -0.046, 0.051], p = 0.92) or CRP (regression coefficient 0.024 [95% CI -0.008, 0.056], p = 0.14). No correlation was demonstrated between plasma levels of C3 and PAI-1 (r = -0.03, p = 0.44), consistent with previous observations that the two proteins affect different pathways in the fibrinolytic system. CONCLUSIONS/INTERPRETATION Similarly to PAI-1, C3 plasma levels are independently associated with fibrin clot lysis in individuals with type 2 diabetes. Therefore, future studies should analyse C3 plasma levels as a surrogate marker of fibrinolysis potential in this population.
Resumo:
Treatment allocation by epidermal growth factor receptor mutation status is a new standard in patients with metastatic nonesmall-cell lung cancer. Yet, relatively few modern chemotherapy trials were conducted in patients characterized by epidermal growth factor receptor wild type. We describe the results of a multicenter phase II trial, testing in parallel 2 novel combination therapies, predefined molecular markers, and tumor rebiopsy at progression. Objective: The goal was to demonstrate that tailored therapy, according to tumor histology and epidermal growth factor receptor (EGFR) mutation status, and the introduction of novel drug combinations in the treatment of advanced nonesmall-cell lung cancer are promising for further investigation. Methods: We conducted a multicenter phase II trial with mandatory EGFR testing and 2 strata. Patients with EGFR wild type received 4 cycles of bevacizumab, pemetrexed, and cisplatin, followed by maintenance with bevacizumab and pemetrexed until progression. Patients with EGFR mutations received bevacizumab and erlotinib until progression. Patients had computed tomography scans every 6 weeks and repeat biopsy at progression. The primary end point was progression-free survival (PFS) ≥ 35% at 6 months in stratum EGFR wild type; 77 patients were required to reach a power of 90% with an alpha of 5%. Secondary end points were median PFS, overall survival, best overall response rate (ORR), and tolerability. Further biomarkers and biopsy at progression were also evaluated. Results: A total of 77 evaluable patients with EGFR wild type received an average of 9 cycles (range, 1-25). PFS at 6 months was 45.5%, median PFS was 6.9 months, overall survival was 12.1 months, and ORR was 62%. Kirsten rat sarcoma oncogene mutations and circulating vascular endothelial growth factor negatively correlated with survival, but thymidylate synthase expression did not. A total of 20 patients with EGFR mutations received an average of 16.
Resumo:
Objectives Pharyngeal arches develop in the head and neck regions, and give rise to teeth, oral jaws, the hyoid bone, operculum, gills, and pharyngeal jaws in teleosts. In this study, the expression patterns of genes in the sonic hedgehog (shh), wnt, ectodysplasin A (eda), and bone morphogenetic protein (bmp) pathways were investigated in the pharyngeal arches of Haplochromis piceatus, one of the Lake Victoria cichlids. Furthermore, the role of the shh pathway in pharyngeal arch development in H. piceatus larvae was investigated. Methods The expression patterns of lymphocyte enhancer binding factor 1 (lef1), ectodysplasin A receptor (edar), shh, patched 1 (ptch1), bmp4, sp5 transcription factor (sp5), sclerostin domain containing 1a (sostdc1a), and dickkopf 1 (dkk1) were investigated in H. piceatus larvae by in situ hybridization. The role of the shh pathway was investigated through morphological phenotypic characterization after its inhibition. Results We found that lef1, edar, shh, ptch1, bmp4, dkk1, sostdc1a, and sp5 were expressed not only in the teeth, but also in the operculum and gill filaments of H piceatus larvae. After blocking the shh pathway using cyclopamine, we observed ectopic shh expression and the disappearance of ptch1 expression. After six weeks of cyclopamine treatment, an absence of teeth in the oral upper jaws and a poor outgrowth of premaxilla, operculum, and gill filaments in juvenile H. piceatus were observed. Conclusions These results suggest that the shh pathway is important for the development of pharyngeal arch derivatives such as teeth, premaxilla, operculum, and gill filaments in H. piceatus.
Resumo:
Pancreatic adenocarcinoma is currently the fifth-leading cause of cancer-related death in the United States. Like with other solid tumors, the growth and metastasis of pancreatic adenocarcinoma are dependent on angiogenesis. Vascular endothelial growth factor (VEGF) is a key angiogenic molecule that plays an important role in angiogenesis, growth and metastasis of many types of human cancer, including pancreatic adenocarcinoma. However, the expression and regulation of VEGF in human pancreatic cancer cells are mostly unknown. ^ To examine the hypothesis that VEGF is constitutively expressed in human pancreatic cancer cells, and can be further induced by tumor environment factors such as nitric oxide, a panel of human pancreatic cancer cell lines were studied for constitutive and inducible VEGF expression. All the cell lines examined were shown to constitutively express various levels of VEGF. To identify the mechanisms responsible for the elevated expression of VEGF, its rates of turnover and transcription were then investigated. While the half-live of VEGF was unaffected, higher transcription rates and increased VEGF promoter activity were observed in tumor cells that constitutively expressed elevated levels of VEGF. Detailed VEGF promoter analyses revealed that the region from −267 to +50, which contains five putative Sp1 binding sites, was responsible for this VEGF promoter activity. Further deletion and point mutation analyses indicated that deletion of any of the four proximal Sp1 binding sites significantly diminished VEGF promoter activity and when all four binding sites were mutated, it was completely abrogated. Consistent with these observations, high levels of constitutive Sp1 expression and DNA binding activities were detected in pancreatic cancer cells expressing high levels of VEGF. Collectively, our data indicates that constitutively expressed Sp1 leads to the constitutive expression of VEGF, and implicates that both molecules involve in the aggressive pathogenesis of human pancreatic cancer. ^ Although constitutively expressed in pancreatic cancer cells, VEGF can be further induced. In human pancreatic cancer specimens, we found that in addition to VEGF, both inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS) were overexpressed, suggesting that nitric oxide might upregulate VEGF expression. Indeed, a nitric oxide donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP) significantly induced VEGF mRNA expression and protein secretion in pancreatic adenocarcinoma cells in a time- and dose-dependant manner. Using a luciferase reporter containing both the VEGF promoter and the 3′ -UTR, we showed that SNAP significantly increased luciferase activity in human pancreatic cancer cells. Notwithstanding its ability to induce VEGF in vitro, pancreatic cancer cells genetically engineered to produce NO did not exhibit increased tumor growth. This inability of NO to promote tumor growth appears to be related to NO-mediated cytotoxicity. The balance between NO mediated effects on pro-angiogenesis and cytotoxicity would determine the biological outcome of NO action on tumor cells. ^ In summary, we have demonstrated that VEGF is constitutively expressed in human pancreatic cancer cells, and that overexpression of transcription factor Sp1 is primarily responsible. Although constitutively expressed in these cells, VEGF can be further induced by NO. However, using a mouse model, we have shown that NO inhibited tumor growth by promoting cytotoxicity. These studies suggest that both Sp1 and NO may be important targets for designing potentially effective therapies of human pancreatic cancer and warrant further investigation. ^
Resumo:
Extracellular signaling pathways initiated by secreted proteins are important in the co-ordination of tissue interactions in multi-cellular organisms, particularly during embryonic development. These signaling cascades direct diverse cellular events, including proliferation, differentiation and migration, in both autocrine and paracrine modes. In adult animals, abnormal function of these proteins often results in degenerative and tumourigenic syndromes. In this study, I have focused on elucidating the role of Bone Morphogenetic Protein (Bmp) signal transduction during neuronal specification and differentiation in the vertebrate embryo, using the mouse retina as a model. Using tissue-specific conditional knock-out approaches, the consequences of genetic loss-of-function of this signaling pathway on retinal physiology were examined. Mutant mice lacking Bmp type I receptor function displayed a range of retinal phenotypes, each of which appeared to be regulated at a different threshold of Bmp receptor activity. Novel essential functions for Bmp signaling were uncovered for retinal neurogenesis, cell survival, and axonal pathfinding at the optic disc. Further, BmprIa and BmprIa exhibited genetic interactions suggestive of functional redundancy. To further characterize the underlying molecular bases for the pleiotropic effects of Bmp receptors, retina-specific loss-of-function mutants of the obligate Bmp-activated transcriptional mediator Smad4 were generated. A comparison of the retina-specific Smad4 mutant phenotypes with those of the Bmp receptor mutant retina revealed that only a subset of retinal phenotypes, namely optic disc axon pathfinding and axial patterning were common for both classes of mutant animals. Thus, these results suggest that, contrary to the classic scheme of Bmp signal transduction, Smad4-independent pathways may be operative downstream of the type I receptors. Indeed, such alternative intracellular signaling cascades may constitute a molecular basis for the multiple cellular responses elicited by Bmp signaling. Finally, I tested whether the potential Bmp pathway targets, the extracellular ligands Fgf9 and Fgf15, mediate essential cellular processes in the retina. The analyses of Fgf9 −/−; Fgf15−/− mutant mice posit a novel shared role for these genes in intra-retinal axon pathfinding. Collectively, these studies have elucidated part of the molecular machinery directing mammalian neuro-retinal development, and provided useful in vivo models to study visual function. ^
Resumo:
Imatinib mesylate, a selective inhibitor of KIT, PDGFR, and Abl kinases, has shown significant success as a therapy for patients with advanced gastrointestinal stromal tumors (GISTs). However, the underlying mechanisms of imatinib-induced cytotoxicity are not well understood. Using gene expression profiling and real-time PCR for target validation, we identified insulin-like growth factor binding protein-3 (IGFBP3) to be to be up-regulated after imatinib treatment in imatinib-sensitive GISTs. IGFBP3 is a multifunctional protein that regulates cell proliferation and survival and mediates the effects of a variety of anti-cancer agents through IGF-dependent and IGF-independent mechanisms. Therefore, we hypothesized that IGFBP3 mediates GIST cell response to imatinib. To test this hypothesis, we manipulated IGFBP3 protein levels in two KIT mutant, imatinib-sensitive GIST cell lines and assessed the resultant changes in cell viability, survival, and imatinib sensitivity. In GIST882 cells, endogenous IGFBP3 was required for cell viability. However, inhibiting imatinib-induced IGFBP3 up-regulation by RNA interference or neutralization resulted in reduced drug sensitivity, suggesting that IGFBP3 sensitizes GIST882 cells to imatinib. GIST-T1 cells, on the other hand, had no detectable levels of endogenous IGFBP3, nor did imatinib induce IGFBP3 up-regulation, in contrast to our previous findings. IGFBP3 overexpression in GIST-T1 cells reduced viability but did not induce cell death; rather, the cells became polyploid through a mechanism that may involve attenuated Cdc20 expression and securin degradation. Moreover, IGFBP3 overexpression resulted in a loss of KIT activation and decreased levels of mature KIT. Consistent with this, GIST-T1 cells overexpressing IGFBP3 were less sensitive to imatinib. Furthermore, as neither GIST882 cells nor GIST-T1 cells expressed detectable levels of IGF-1R, IGFBP3 is likely not exerting its effects by modulating IGF signaling through IGF-1R or IR/IGF-1R hybrid receptors in these cell lines. Collectively, these findings demonstrate that IGFBP3 has cell-dependent effects and would, therefore, not be an ideal marker for identifying imatinib response in GISTs. Nevertheless, our results provide preliminary evidence that IGFBP3 may have some therapeutic benefits in GISTs. ^
Resumo:
CBP is a transcriptional coactivator required by many transcription factors for transactivation. Rubinstein–Taybi syndrome, which is an autosomal dominant syndrome characterized by abnormal pattern formation, has been shown to be associated with mutations in the Cbp gene. Furthermore, Drosophila CBP is required in hedgehog signaling for the expression of decapentapleigic, the Drosophila homologue of bone morphogenetic protein. However, no direct evidence exists to indicate that loss of one copy of the mammalian Cbp gene affects pattern formation. Here, we show that various abnormalities occur at high frequency in the skeletal system of heterozygous Cbp-deficient mice resulting from a C57BL/6-CBA × BALB/c cross. In support of a conserved signaling pathway for pattern formation in insects and mammals, the expression of Bmp7 was found to be reduced in the heterozygous mutants. The frequency of the different abnormalities was significantly lower in a C57BL/6-CBA background, suggesting that the genetic background is an important determinant of the variability and severity of the anomalies seen in Rubinstein–Taybi syndrome patients.
Resumo:
Macrophages play a key role in both normal and pathological processes involving immune and inflammatory responses, to a large extent through their capacity to secrete a wide range of biologically active molecules. To identify some of these as yet not characterized molecules, we have used a subtraction cloning approach designed to identify genes expressed in association with macrophage activation. One of these genes, designated macrophage inhibitory cytokine 1 (MIC-1), encodes a protein that bears the structural characteristics of a transforming growth factor β (TGF-β) superfamily cytokine. Although it belongs to this superfamily, it has no strong homology to existing families, indicating that it is a divergent member that may represent the first of a new family within this grouping. Expression of MIC-1 mRNA in monocytoid cells is up-regulated by a variety of stimuli associated with activation, including interleukin 1β, tumor necrosis factor α (TNF-α), interleukin 2, and macrophage colony-stimulating factor but not interferon γ, or lipopolysaccharide (LPS). Its expression is also increased by TGF-β. Expression of MIC-1 in CHO cells results in the proteolytic cleavage of the propeptide and secretion of a cysteine-rich dimeric protein of Mr 25 kDa. Purified recombinant MIC-1 is able to inhibit lipopolysaccharide -induced macrophage TNF-α production, suggesting that MIC-1 acts in macrophages as an autocrine regulatory molecule. Its production in response to secreted proinflammatory cytokines and TGF-β may serve to limit the later phases of macrophage activation.
Resumo:
Members of the transforming growth factor β (TGF-β) superfamily are involved in diverse physiological activities including development, tissue repair, hormone regulation, bone formation, cell growth, and differentiation. At the cellular level, these functions are initiated by the interaction of ligands with specific transmembrane receptors with intrinsic serine/threonine kinase activity. The signaling pathway that links receptor activation to the transcriptional regulation of the target genes is largely unknown. Recent work in Drosophila and Xenopus signaling suggested that Mad (Mothers against dpp) functions downstream of the receptors of the TGF-β family. Mammalian Mad1 has been reported to respond to bone morphogenetic protein (BMP), but not to TGF-β or activin. We report here the cloning and functional studies of a novel mammalian Mad molecule, Mad3, as well as a rat Mad1 homologue. Overexpression of Mad3 in a variety of cells stimulated basal transcriptional activity of the TGF-β/activin-responsive reporter construct, p3TP-Lux. Furthermore, expression of Mad3 could potentiate the TGF-β- and activin-induced transcriptional stimulation of p3TP-Lux. By contrast, overexpression of Mad1 inhibited the basal as well as the TGF-β/activin induced p3TP-Lux activity. These findings, therefore, support the hypothesis that Mad3 may serve as a mediator linking TGF-β/activin receptors to transcriptional regulation.
Resumo:
STAT1 is an essential transcription factor for macrophage activation by IFN-γ and requires phosphorylation of the C-terminal Ser727 for transcriptional activity. In macrophages, Ser727 phosphorylation in response to bacterial lipopolysaccharide (LPS), UV irradiation, or TNF-α occurred through a signaling path sensitive to the p38 mitogen-activated protein kinase (p38 MAPK) inhibitor SB203580 whereas IFN-γ-mediated Ser727 phosphorylation was not inhibited by the drug. Consistently, SB203580 did not affect IFN-γ-mediated, Stat1-dependent transcription but inhibited its enhancement by LPS. Furthermore, LPS, UV irradiation, and TNF-α caused activation of p38 MAPK whereas IFN-γ did not. An essential role for p38 MAPK activity in STAT1 Ser727 phosphorylation was confirmed by using cells expressing an SB203580-resistant p38 MAPK. In such cells, STAT1 Ser727 phosphorylation in response to UV irradiation was found to be SB203580 insensitive. Targeted disruption of the mapkap-k2 gene, encoding a kinase downstream of p38 MAPK with a key role in LPS-stimulated TNF-α production and stress-induced heat shock protein 25 phosphorylation, was without a significant effect on UV-mediated Ser727 phosphorylation. The recombinant Stat1 C terminus was phosphorylated in vitro by p38MAPKα and β but not by MAPK-activated protein kinase 2. Janus kinase 2 activity, previously reported to be required for IFN-γ-mediated Ser727 phosphorylation, was not needed for LPS-mediated Ser727 phosphorylation, and activation of Janus kinase 2 did not cause the appearance of STAT1 Ser727 kinase activity. Our data suggest that STAT1 is phosphorylated at Ser727 by a stress-activated signaling pathway either through p38 MAPK directly or through an unidentified kinase downstream of p38MAPK.
Resumo:
Macrophages become activated by bacterial endotoxin (lipopolysaccharide) and other stimuli to release proinflammatory cytokines and NO. To prevent release of toxic or potentially lethal quantities of these factors, the state of macrophage activation is counter-regulated by anti-inflammatory mediators (e.g., glucocorticoid hormones, interleukin 10, and transforming growth factor type β). Fetuin, a negative acute-phase protein, recently was implicated as an anti-inflammatory mediator, because it is required for macrophage deactivation by spermine. In the present studies, we found that fetuin is necessary for macrophages to respond to CNI-1493, a tetravalent guanylhydrazone inhibitor of p38 mitogen-activated protein kinase phosphorylation. Fetuin dose-dependently increases macrophage uptake of CNI-1493, which can be specifically inhibited by anti-human fetuin antibodies. Anti-human fetuin antibodies render primary human peripheral blood mononuclear cells insensitive to deactivation by CNI-1493. Thus, macrophages use fetuin as an opsonin for cationic-deactivating molecules, both endogenous (e.g., spermine) and pharmacologic (e.g., CNI-1493). This role of fetuin as an opsonic participant in macrophage-deactivating mechanisms has implications for understanding and manipulating the innate immune response.