963 resultados para Bismuth sulfide
Resumo:
The lithium salt of the anionic SPS pincer ligand composed of a central hypervalent lambda(4)-phosphinine ring bearing two ortho-positioned diphenylphosphine sulfide side arms reacts with [Mn(CO)(5)Br] to give fac-[Mn(SPS)(CO)(3)], This isomer can be converted photochemicaily to mer-[Mn(SPS)(CO)(3)], with a very high quantum yield (0.80 +/- 0.05). The thermal backreaction is slow (taking ca. 8 h at room temperature), in contrast to rapid electrodecatalyzed mer-to-fac isomerization triggered by electrochemical reduction of mer-[Mn(SPS)(CO)(3)]. Both geometric isomers of [Mn(SPS)(CO)(3)] have been characterized by X-ray crystallography. Both isomers show luminescence from a low-lying (IL)-I-3 (SPS-based) excited state. The light emission of fac-[Mn(SPS)(CO)(3)] is largely quenched by the efficient photoisomerization occurring probably from a low-lying Mn-CO dissociative excited state. Density functional theory (DFT) and time-dependent DFT calculations describe the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of fac- and mer-[Mn(CO)(3)(SPS)] as ligand-centered orbitals, largely localized on the phosphinine ring of the SPS pincer ligand. In line with the ligand nature of its frontier orbitals, fac-[Mn(SPS)(CO)(3)] is electrochemically reversibly oxidized and reduced to the corresponding radical cation and anion, respectively. The spectroscopic (electron paramagnetic resonance, IR, and UV-vis) characterization of the radical species provides other evidence for the localization of the redox steps on the SIPS ligand. The smaller HOMO-LUMO energy difference in the case of mer-[Mn(CO)(3)(SPS)], reflected in the electronic absorption and emission spectra, corresponds with its lower oxidation potential compared to that of the fac isomer. The thermodynamic instability of mer-[Mn(CO)(3)(SPS)], confirmed by the DFT calculations, increases upon one-electron reduction and oxidation of the complex.
Resumo:
Novel bis(azidophenyl)phosphole sulfide building block 8 has been developed to give access to a plethora of phosphole-containing π-conjugated systems in a simple synthetic step. This was explored for the reaction of the two azido moieties with phenyl-, pyridyl- and thienylacetylenes, to give bis(aryltriazolyl)-extended π-systems, having either the phosphole sulfide (9) or the phosphole (10) group as central ring. These conjugated frameworks exhibit intriguing photophysical and electrochemical properties that vary with the nature of the aromatic end-group. The λ3-phospholes 10 display blue fluorescence (λem = 460–469 nm) with high quan-tum yield (ΦF = 0.134–0.309). The radical anion of pyridylsubstituted phosphole sulfide 9b was observed with UV/Vis spectroscopy. TDDFT calculations on the extended π-systems showed some variation in the shape of the HOMOs, which was found to have an effect on the extent of charge transfer, depending on the aromatic end-group. Some fine-tuning of the emission maxima was observed, albeit subtle, showing a decrease in conjugation in the order thienyl � phenyl � pyridyl. These results show that variations in the distal ends of such π-systems have a subtle but significant effect on photophysical properties.
Gallium-sulphide supertetrahedral clusters as building blocks of covalent organic-inorganic networks
Resumo:
The synthesis and characterisation of novel covalent organic-inorganic architectures containing organically-functionalised supertetrahedra is described. The structures of these unique materials consist of one-dimensional zigzag chains or of honeycomb-type layers, in which gallium-sulfide supertetrahedral clusters and dipyridyl ligands alternate.
Resumo:
Natural aerosol plays a significant role in the Earth’s system due to its ability to alter the radiative balance of the Earth. Here we use a global aerosol microphysics model together with a radiative transfer model to estimate radiative effects for five natural aerosol sources in the present-day atmosphere: dimethyl sulfide (DMS), sea-salt, volcanoes, monoterpenes, and wildfires. We calculate large annual global mean aerosol direct and cloud albedo effects especially for DMS-derived sulfate (–0.23 Wm–2 and –0.76 Wm–2, respectively), volcanic sulfate (–0.21 Wm–2 and –0.61 Wm–2) and sea-salt (–0.44 Wm–2 and –0.04 Wm–2). The cloud albedo effect responds nonlinearly to changes in emission source strengths. The natural sources have both markedly different radiative efficiencies and indirect/direct radiative effect ratios. Aerosol sources that contribute a large number of small particles (DMS-derived and volcanic sulfate) are highly effective at influencing cloud albedo per unit of aerosol mass burden.
Resumo:
FeM2X4 spinels, where M is a transition metal and X is oxygen or sulfur, are candidate materials for spin filters, one of the key devices in spintronics. We present here a computational study of the inversion thermodynamics and the electronic structure of these (thio)spinels for M = Cr, Mn, Co, Ni, using calculations based on the density functional theory with on-site Hubbard corrections (DFT+U). The analysis of the configurational free energies shows that different behaviour is expected for the equilibrium cation distributions in these structures: FeCr2X4 and FeMn2S4 are fully normal, FeNi2X4 and FeCo2S4 are intermediate, and FeCo2O4 and FeMn2O4 are fully inverted. We have analyzed the role played by the size of the ions and by the crystal field stabilization effects in determining the equilibrium inversion degree. We also discuss how the electronic and magnetic structure of these spinels is modified by the degree of inversion, assuming that this could be varied from the equilibrium value. We have obtained electronic densities of states for the completely normal and completely inverse cation distribution of each compound. FeCr2X4, FeMn2X4, FeCo2O4 and FeNi2O4 are half-metals in the ferrimagnetic state when Fe is in tetrahedral positions. When M is filling the tetrahedral positions, the Cr-containing compounds and FeMn2O4 are half-metallic systems, while the Co and Ni spinels are insulators. The Co and Ni sulfide counterparts are metallic for any inversion degree together with the inverse FeMn2S4. Our calculations suggest that the spin filtering properties of the FeM2X4 (thio)spinels could be modified via the control of the cation distribution through variations in the synthesis conditions.
Resumo:
The polychaete worm Nereis diversicolor engineers its environment by creating oxygenated burrows in anoxic intertidal sediments. The authors carried out a laboratory microcosm experiment to test the impact of polychaete burrowing and feeding activity on the lability and methylation of mercury in sediments from the Bay of Fundy, Canada. The concentration of labile inorganic mercury and methylmercury in burrow walls was elevated compared to worm-free sediments. Mucus secretions and organic detritus in worm burrows increased labile mercury concentrations. Worms decreased sulfide concentrations, which increased Hg bioavailability to sulfate-reducing bacteria and increased methylmercury concentrations in burrow linings. Because the walls of polychaete burrows have a greater interaction with organisms, and the overlying water, the concentrations of mercury and methylmercury they contain is more toxicologically relevant to the base of a coastal food web than bulk samples. The authors recommend that researchers examining Hg in marine environments account for sediment dwelling invertebrate activity to more fully assess mercury bioavailability.
Resumo:
Experimental evidence suggests that nitric oxide (NO) and hydrogen sulfide (H2S) signaling pathways are intimately intertwined, with mutual attenuation or potentiation of biological responses in the cardiovascular system and elsewhere. The chemical basis of this interaction is elusive. Moreover, polysulfides recently emerged as potential mediators of H2S/sulfide signaling, but their biosynthesis and relationship to NO remain enigmatic. We sought to characterize the nature, chemical biology, and bioactivity of key reaction products formed in the NO/sulfide system. At physiological pH, we find that NO and sulfide form a network of cascading chemical reactions that generate radical intermediates as well as anionic and uncharged solutes, with accumulation of three major products: nitrosopersulfide (SSNO−), polysulfides, and dinitrososulfite N-nitrosohydroxylamine-N-sulfonate (SULFI/NO), each with a distinct chemical biology and in vitro and in vivo bioactivity. SSNO− is resistant to thiols and cyanolysis, efficiently donates both sulfane sulfur and NO, and potently lowers blood pressure. Polysulfides are both intermediates and products of SSNO− synthesis/decomposition, and they also decrease blood pressure and enhance arterial compliance. SULFI/NO is a weak combined NO/nitroxyl donor that releases mainly N2O on decomposition; although it affects blood pressure only mildly, it markedly increases cardiac contractility, and formation of its precursor sulfite likely contributes to NO scavenging. Our results unveil an unexpectedly rich network of coupled chemical reactions between NO and H2S/sulfide, suggesting that the bioactivity of either transmitter is governed by concomitant formation of polysulfides and anionic S/N-hybrid species. This conceptual framework would seem to offer ample opportunities for the modulation of fundamental biological processes governed by redox switching and sulfur trafficking.
Resumo:
Background Recent experimental evidence suggests that nitric oxide (NO) and hydrogen sulfide signaling pathways are intimately intertwined particularly in the vasculature, with mutual attenuation or potentiation of biological responses under control of the soluble guanylyl cyclase (sGC) / phopshodiesterase (PDE) pathway. There is now compelling evidence that part of the NO/sulfide cross talk has a chemical foundation via the formation of S/N-hybrid molecules including thionitrous acid (HSNO) and nitrosopersulfde (SSNO-). The aim of this study was to characterize the bioactive products of the interaction between sulfide and NO metabolites targeting sGC that may potentially regulate vasodilation. Results We found that the chemical interaction of sulfide with NO or nitrosothiols leads to formation of S/N-hybrid metabolites including SSNO- via intermediate formation of HSNO. Contrary to a recent report in the literature but consistent with the transient nature of HSNO, its formation was not detectable by high-resolution mass spectrometry under physiologically relevant conditions. SSNO- is also formed in non-aqueous media by the reaction of nitrite with oxidized sulfur species including colloidal sulfur and polysulfides. SSNO- is stable in the presence of high concentrations of thiols, release NO, and activates sGC in RFL-6 cells in an NO-dependent fashion. Moreover, SSNO- is a potent vasodilator in aortic rings in vitro and lowers blood pressure in rats in vivo. The presence of high concentrations of SOD or thiols does not affect SSNO- mediated sGC activation, while it potentiates and inhibits the effects of the nitroxyl (HNO) donor Angeli's salt, suggesting that HNO release from SSNO- is not involved in sGC activation. Conclusion The reaction between NO and sulfide leads to fomation of S/N-hybrid molecules including SSNO-, releasing NO, activating sGC and inducing vasodilation. SSNO- is considerably more stable than HSNO at pH 7.4 and thus a more likely biological mediator that can account for the chemical cross-talk between NO and sulfide.
Resumo:
Understanding the underlying mechanisms that suppress thermal conduction in solids is of paramount importance for the targeted design of materials for thermal management and thermoelectric energy conversion applications. Bismuth copper oxychalcogenides, BiOCuQ (Q = Se, Te), are highly crystalline thermoelectric materials with an unusually low lattice thermal conductivity of approx. 0.5 Wm-1K-1, a value normally found in amorphous materials. Here we unveil the origin of the unusual thermal transport properties of these phases. First principles calculations of the vibrational properties combined with analysis of in-situ neutron diffraction data, demonstrate that weak bonding of copper atoms within the structure leads to an unexpected vibrational mode at low frequencies, which is likely to be a major contributor to the low thermal conductivity of these materials. In addition, we show that anharmonicity and the large Grüneisen parameter in these oxychalcogenides are mainly related to the low frequency copper vibrations, rather than to the Bi3+ lone pairs.
Resumo:
Background, aim and scope Although many recent studies have focused on sediment potential toxicity, few of them were performed in tropical shallow aquatic environments. Those places can suffer short-time variations, especially due to water column circulations generated by changes in temperature and wind. Rio Grande reservoir is such an example; aside from that, it suffers various anthropogenic impacts, despite its multiple uses. Materials and methods This work presents the first screening step for understanding sediment quality from Rio Grande reservoir by comparing metal content using three different sediment quality guidelines. We also aimed at verifying any possible spatial heterogeneity. Results and discussion We found spatial heterogeneity varying according to the specific metal. Results showed a tendency for metals to remain as insoluble as metal sulfide (potentially not bioavailable), since sulfide was in excess and sediment physical-chemical characteristics contribute to sulfide maintenance (low redox potential, neutral pH, low dissolved oxygen, and high organic matter content). On the other hand, metal concentrations were much higher than suggested by Canadian guidelines and regional background values, especially Cu, which raises the risk of metal remobilization in cases of water circulation. Further study steps include the temporal evaluation of AVS/SEM, a battery of bioassays and the characterization of organic compounds.
Resumo:
P>Aim To investigate the diversity, levels and proportions of Archaea in the subgingival biofilm of generalized aggressive periodontitis (GAgP; n=30) and periodontally healthy (PH; n=30) subjects. Materials and methods Diversity was determined by sequencing archaeal 16S rRNA gene libraries from 20 samples (10/group). The levels and proportions of Archaea were analysed by quantitative PCR (qPCR) in four and two samples/subject in GAgP and PH groups, respectively. Results Archaea were detected in 27/28 subjects and 68% of the sites of the GAgP group, and in 26/30 subjects and 58.3% sites of the PH group. Methanobrevibacter oralis was found in all 20 samples studied, Methanobacterium curvum/congolense in three GAgP and six PH samples, and Methanosarcina mazeii in four samples from each group. The levels and proportions of Archaea were higher in GAgP than in PH, whereas no differences were observed between the two probing depth category sites from the GAgP group. Conclusion Archaea were frequently found in subjects with periodontal health and GAgP, especially M. oralis. However, the higher levels and proportions (Archaea/total prokaryotes) of this domain observed in GAgP in comparison with PH subjects indicate a possible role of some of these microorganisms as an environmental modifier in GAgP.
Resumo:
CdS is one of the most important II-VI semiconductors, with applications in solar cells, optoelectronics and electronic devices. CdS nanoparticles were synthesized via microwave-assisted solvothermal technique. Structural and morphological characterization revealed the presence of crystalline structures presenting single phase with different morphologies such as ""nanoflowers"" and nanoplates depending on the solvent used. Optical characterization was made by diffuse reflectance and photoluminescence spectroscopy, revealing the influence of the different solvents on the optical properties due to structural defects generated during synthesis. It is proposed that these defects are related to sulfur vacancies, with higher concentration of defects for the sample synthesized in ethylene glycol in comparison with the one synthesized in ethylene diamine. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Bi(4-x)La(x)Ti(3)O(12) (BLT) ceramics were prepared and studied in this work in terms of La(3+)-modified microstructure and phase development as well as electrical response. According to the results processed from X-ray diffraction and electrical measurements, the solubility limit (XL) of La(3+) into the Bi(4)Ti(3)O(12) (BIT) matrix was here found to locate slightly above x = 1.5. Further, La(3+) had the effect of reducing the material grain size, while changing its morphology from the plate-like form, typical of BIT ceramics, to a spherical-like one. The electrical results presented and discussed here also include the behavior of the temperature of the ferroelectric-paraelectric phase transition as well as the normal or diffuse and/or relaxor nature of this transition depending on the La(3+) content. (c) 2008 Elsevier Ltd. All fights reserved.
Resumo:
This paper reports the production of bismuth germanate ceramic scintillator (Bi4Ge3O12) by combustion synthesis (SHS) method, focusing on the influence of the synthesis parameters on the crystalline phases and agglomeration of the nanoparticles. The synthesis and sintering conditions were investigated through thermal analysis, X-ray diffraction as function of temperature, dilatometry and scanning electron microscopy. Well-dispersed Bi4Ge3O12 powder was accomplished by the combustion of the initial solution at pH 9, followed by low temperature calcination and milling. Sintered ceramics presented relative density of 98% and single crystalline Bi4Ge3O12 phase. The luminescent properties of the ceramics were investigated by photo- and radio- luminescence measurements and reproduced the typical Bi4Ge3O12 single-crystal spectra when excited with UV, beta and X-rays. The sintered ceramics presented light output of 4.4 x 10(3) photons/McV. (c) 2008 Published by Elsevier Ltd.
Resumo:
This paper presents a study of AISI 1040 steel corrosion in aqueous electrolyte of acetic acid buffer containing 3.1 and 31 x 10(-3) mol dm(-3) of Na(2)S in both the presence and absence of 3.5 wt.% NaCl. This investigation of steel corrosion was carried out using potential polarization, and open-circuit and in situ optical microscopy. The morphological analysis and classification of types of surface corrosion damage by digital image processing reveals grain boundary corrosion and shows a non-uniform sulfide film growth, which occurs preferentially over pearlitic grains through successive formation and dissolution of the film. (C) 2011 Elsevier Ltd. All rights reserved.