975 resultados para Biotechnology


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bovine α-lactalbumin (α-La) and lysozyme (Lys), two globular proteins with highly homologous tertiary structures and opposite isoelectric points, were used to produce bio-based supramolecular structures under various pH values (3, 7 and 11), temperatures (25, 50 and 75 °C) and times (15, 25 and 35 min) of heating. Isothermal titration calorimetry experiments showed protein interactions and demonstrated that structures were obtained from the mixture of α-La/Lys in molar ratio of 0.546. Structures were characterized in terms of morphology by transmission electron microscopy (TEM) and dynamic light scattering (DLS), conformational structure by circular dichroism and intrinsic fluorescence spectroscopy and stability by DLS. Results have shown that protein conformational structure and intermolecular interactions are controlled by the physicochemical conditions applied. The increase of heating temperature led to a significant decrease in size and polydispersity (PDI) of α-La–Lys supramolecular structures, while the increase of heating time, particularly at temperatures above 50 °C, promoted a significant increase in size and PDI. At pH 7 supramolecular structures were obtained at microscale – confirmed by optical microscopy – displaying also a high PDI (i.e. > 0.4). The minimum size and PDI (61 ± 2.3 nm and 0.14 ± 0.03, respectively) were produced at pH 11 for a heating treatment of 75 °C for 15 min, thus suggesting that these conditions could be considered as critical for supramolecular structure formation. Its size and morphology were confirmed by TEM showing a well-defined spherical form. Structures at these conditions showed to be stable at least for 30 or 90 days, when stored at 25 or 4 °C, respectively. Hence, α-La–Lys supramolecular structures showed properties that indicate that they are a promising delivery system for food and pharmaceutical applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Olive mill wastewaters (OMW) and vinasses (VS) are effluents produced respectively by olive mills and wineries, both sectors are of great economic importance in Mediterranean countries. These effluents cause a large environmental impact, when not properly processed, due to their high concentration of phenolic compounds, COD and colour. OMW may be treated by biological processes but, in this case, a dilution is necessary, increasing water consumption. The approach here in proposed consists on the bioremediation of OMW and VS by filamentous fungi. In a screening stage, three fungi (Aspergillus ibericus, Aspergillus uvarum, Aspergillus niger) were selected to bioremediate undiluted OMW, two-fold diluted OMW supplemented with nutrients, and a mixture of OMW and VS in the proportion 1:1 (v/v). Higher reductions of phenolic compounds, colour and COD were achieved mixing both residues; with A. uvarum providing the best results. In addition, the production of enzymes was also evaluated during this bioremediation process, detecting in all cases lipolytic, proteolytic and tannase activities. A. ibericus, A. uvarum and A. niger achieved the highest value of lipase (1253.7 ± 161.2 U/L), protease (3700 ± 124.3 U/L) and tannase (284.4 ± 12.1 U/L) activities, respectively. Consequently, this process is an interesting alternative to traditional processes to manage these residues, providing simultaneously high economic products, which can be employed in the same industries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of genome-scale metabolic models has been rapidly increasing in fields such as metabolic engineering. An important part of a metabolic model is the biomass equation since this reaction will ultimately determine the predictive capacity of the model in terms of essentiality and flux distributions. Thus, in order to obtain a reliable metabolic model the biomass precursors and their coefficients must be as precise as possible. Ideally, determination of the biomass composition would be performed experimentally, but when no experimental data are available this is established by approximation to closely related organisms. Computational methods however, can extract some information from the genome such as amino acid and nucleotide compositions. The main objectives of this study were to compare the biomass composition of several organisms and to evaluate how biomass precursor coefficients affected the predictability of several genome-scale metabolic models by comparing predictions with experimental data in literature. For that, the biomass macromolecular composition was experimentally determined and the amino acid composition was both experimentally and computationally estimated for several organisms. Sensitivity analysis studies were also performed with the Escherichia coli iAF1260 metabolic model concerning specific growth rates and flux distributions. The results obtained suggest that the macromolecular composition is conserved among related organisms. Contrasting, experimental data for amino acid composition seem to have no similarities for related organisms. It was also observed that the impact of macromolecular composition on specific growth rates and flux distributions is larger than the impact of amino acid composition, even when data from closely related organisms are used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Doctoral Dissertation for PhD degree in Chemical and Biological Engineering

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The metabolism of methanogenic archaea is inhibited by 2-bromoethanesulfonate (BES). Methane production is blocked because BES is an analog of methyl-coenzyme M and competes with this key molecule in the last step of methanogenesis. For this reason, BES is commonly used in several studies to avoid growth of acetoclastic and hydrogenotrophic methanogens [1]. Despite its effectiveness as methanogenic inhibitor, BES was found to alter microbial communities’ structure, to inhibit the metabolism of non-methanogenic microorganisms and to stimulate homoacetogenic metabolism [2,3]. Even though sulfonates have been reported as electron acceptors for sulfate- and sulfite-reducing bacteria (SRB), only one study described the reduction of BES by complex microbial communities [4]. In this work, a sulfate-reducing bacterium belonging to Desulfovibrio genus (98 % identity at the 16S rRNA gene level with Desulfovibrio aminophilus) was isolated from anaerobic sludge after several successive transfers in anaerobic medium containing BES as sole substrate. Sulfate was not supplemented to the anaerobic growth medium. This microorganism was able to grow under the following conditions: on BES plus H2/CO2 in bicarbonate buffered medium; on BES without H2/CO2 in bicarbonate buffered medium; and on BES in phosphate buffered medium. The main products of BES utilization were sulfide and acetate, the former was produced by the reduction of sulfur from the sulfonate moiety of BES and the latter likely originated from the carbon backbone of the BES molecule. BES was found, in this study, to represent not only an alternative electron acceptor but also to serve as electron donor, and sole carbon and energy source, supporting growth of a Desulfovibrio sp. obtained in pure culture. This is the first study that reports growth of SRB with BES as electron donor and electron acceptor, showing that the methanogenic inhibitor is a substrate for anaerobic growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Strategic funding of UID/BIO/04469/2013 unit and project ref RECI/BBB-EBI/0179/2012 (project number FCOMP-01-0124-FEDER-027462) and Xanel Vecino post-doctoral grant (ref SFRH/BPD/101476/2014) funded by Fundação para a Ciência e a Tecnologia, Portugal

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In some regions of Brazil, especially where the water is scarce, drinking water is stored in water storage tanks. This practice gives the consumer the guarantee of available water. The water storage conditions such as the exposure to hot weather when the tanks are on rooftops allow the development of microorganisms and microbial biofilms which can deteriorate the water quality and increase the risk to human health [1,2]. This study describes the filamentous fungi (FF) detected in free water and biofilms in drinking water storage tanks in Recife - Pernambuco, Brazil. Five sampling times in triplicate were performed at two distinct points. Colony-forming units (CFU) of FF fungi were determined with 0.45 μm filtration membranes using peptone glucose rose Bengal agar (PGRBA). From the 30 samples analysed a total of 1136 CFU were obtained. The water biofilms were collected from samplers consisting of polyethylene coupons, previously installed in the reservoirs. These coupons were transferred to PGRBA plates and incubated using with the same conditions described for free FF. For the in situ detection of FF in biofilms the Calcofluor White staining technique was used. This procedure demonstrated FF forming biofilms on the surfaces of the coupons. Brazilian legislation does not define limits for FF in drinking water. However considering the potential risk of fungal contamination, the data obtained in this study will contribute to developing future quantitative and qualitative parameters for the presence of fungi in drinking water distribution systems in Brazil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[Excerpt] Although Acinetobacter baumannii has been the main agent for healthcare infections, recent reports suggest that some Acinetobacter environmental species should be considered as a potential cause of disease. In Angola, there are no previous data on its environmental reservoirs and resistance features. We aimed to unveil the occurrence and diversity of Acinetobacter species and the presence of resistance mechanisms in different non-clinical settings in Angola.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[Excerpt] Bioethanol from lignocellulosic materials (LCM), also called second generation bioethanol, is considered a promising alternative to first generation bioethanol. An efficient production process of lignocellulosic bioethanol involves an effective pretreatment of LCM to improve the accessibility of cellulose and thus enhance the enzymatic saccharification. One interesting approach is to use the whole slurry from treatment, since allows economical and industrial benefits: washing steps are avoided, water consumption is lower and the sugars from liquid phase can be used, increasing ethanol concentration [1]. However, during the pretreatment step some compounds (such as furans, phenolic compounds and weak acids) are produced. These compounds have an inhibitory effect on the microorganisms used for hydrolysate fermentation [2]. To overcome this, the use of a robust industrial strain together with agro-industrial by-products as nutritional supplementation was proposed to increase the ethanol productivities and yields. (...)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[Excerpt] Cupuassu (Theobroma grandiflorum), tucumã (Astrocaryum aculeatum), peach palm (Bactris gasipaes) and abricó (American Mammea L.) are exotic fruits found in the Brazilian Amazon rainforest. All of them are well known by the native populations, and for centuries the pulps have been used in the production of juices, deserts, jams, syrups, and alcoholic beverages, among others. Additionally, the fruit seeds have been used as animal feed, fertilizers or to plant new seedlings, but a great part of these seeds are usually discarded. (...)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[Excerpt] The aim of this research was to evaluate the influence of temperature, time and mass/ volume ratio on the release of sugars and polyphenols using an autohydrolysis procedure from pineapple waste. A Box-Bhenken design was used with three factors (time, temperature and mass/volume ratio) and three levels was used. All treatments were performed in triplicate. Nine central points were used. For autohydrlosysis treatments, an oil bath was used [1]. After autohydrolysis, liquid phases or hydrolysates were analyzed for glucose and fructose concentration by high performance liquid chromatography (HPLC) [2]. The FolinCiocalteu assay was used to measure total polyphenols of hydrolysates [3] and HPLC to identify these molecules [4]. (...)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[Excerpt] Corynebacterium glutamicum is a facultative anaerobic, gram-positive bacterium with a GRAS status that grows fast and achieves high cell densities. C. glutamicum is commonly used in amino acids production, and is also able to convert sugars in organic acids (OA) and alcohols in specific conditions: anaerobic and limited-oxygen environments. In these conditions, the carbon metabolism is modified, namely the flux shifts from the pentose phosphate pathway to glycolysis and the TCA cycle flux decreases and consequently bacterial growth is strongly affected [1,2]. (...)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[Excerpt] Lignocellulosic plant biomass is being envisioned by biorefinery industry as an alternative to current petroleum platform because of the large scale availability, low cost and environmentally benign production. The industrial bioprocessing designed to transform lignocellulosic biomass into biofuels are harsh and the enzymatic reactions may be severely compromised reducing the production of fermentable sugars from lignocellulosic biomass. Thermophilic bacteria consortium are a potential source of cellulases and hemicellulases adapted to extreme environmental conditions, which can be exploited as a new source for the development of more robust enzymatic cocktails. (...)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[Excerpt] Current agricultural and industrial practices have led to the generation of large amounts of various low-value or negative cost crude wastes, which are difficult and economically notattractive to treat and valorize. One important example of waste generation is animal fat, commonly found in tanning process and slaughterhouses. These wastes, in which the lipids are often the main and most problematic components, are not currently used effectively and there are almost no application methods to recover the respective value. (...)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[Excerpt] Waste cooking oils (WCO) generated from vegetable oils used at high temperatures in food frying, cause environmental problems and must be reutilized. New strategies to valorize these wastes are attracting a great scientific interest due to the important advantages offered from an economic and environmental point of view. A microbial platform can be established to convert low-value hydrophobic substrates, such as waste cooking oils, to microbial lipids (single cell oil, SCO) and other value-added bioproducts, such as lipase. (...)