964 resultados para Biomass fuel
Resumo:
Calculated answer: First-principles calculations have been applied to calculate the energy barrier for the key step in CO formation on a Pt surface (see picture; Pt blue, Pt atoms on step edge yellow) to understand the low CO2 selectivity in the direct ethanol fuel cell. The presence of surface oxidant species such as O (brown bar) and OH (red bar) led to an increase of the energy barrier and thus an inhibition of the key step. © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
Environmental concerns relating to gaseous emissions from transport have led to growth in the use of compressed natural gas vehicles worldwide with an estimated 13 million Natural Gas Vehicles (NGVs) currently in operation. Across Europe, many countries are replacing traditional diesel oil in captive fleets such as buses used for public transport and heavy and light goods vehicles used for freight and logistics with CNG vehicles. Initially this was to reduce localised air pollution in urban environments. However, with the need to reduce greenhouse gas emissions CNG is seen as a cleaner more energy efficient and environmental friendly alternative. This paper briefly examines the growth of NGVs in Europe and worldwide. Then a case study on CNG the introduction in Spain and Italy is presented. As part of the case study, policy interventions are examined. Finally, a statistical analysis of private and public refuelling stations in both countries is also provided. CNG can also be mixed with biogas. This study and the role of CNG is relevant because of the existing European Union Directive 2009/28/EC target, requiring that 10% of transport energy come from renewable sources, not alone biofuels such as biogas. CNG offers another alternative transport fuel.
Resumo:
This study employs density functional theory (DFT) calculations to examine the mechanism by which acetaldehyde is formed on platinum in a typical direct ethanol fuel cell (DEFC). A pathway is found involving the formation of a strongly hydrogen-bonded complex between adsorbed ethanol and the surface hydroxyl (OH) species, followed by the facile alpha-dehydrogenation of ethanol, with spontaneous weakening of the hydrogen bond in favor of adsorbed acetaldehyde and water. This mechanism is found to be comparably viable on both the close-packed surface and the monatomic steps. Comparison of further reactions on these two sites strongly indicates that the steps act as net removers of acetaldehyde from the product stream, while the flat surface acts as a net producer.
Resumo:
A quantitative research on S and SO2 poisoning Pt/Vulcan carbon (Pt/VC) catalysts for fuel cells was conducted by the three-electrode method. Pt/VC electrodes were contaminated by submersion in a SO2- containing solution made up of 0.2 mM Na2SO3 and 0.5 M H2SO4 for different periods of time, and held at 0.05 V (vs. RHE) in 0.5 M H2SO4 solutions in order to gain zero-valence sulfur (S0) poisoned electrodes. The sulfur coverage of Pt was determined from the total charge consumed as the sulfur was oxidized from S0 at 0.05 V (vs. RHE) to sulfate at >1.1 V (vs. RHE). The summation of initial coverage of S0 (S) and coverage of H (H) are approximately equal to 1 (H + S = 1) when 0.5