995 resultados para Biology, Botany|Biology, Ecology


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The name Ernest Ingersoll is well-known to many shellfishery biologists as the author of two outstanding monographs on the shellfisheries of the United States and Canada in the 1880's. The first (Ingersoll, 1881a), entitled "A Report on the Oyster-Industry of the United States," was a 252-page description of historical and contemporary oyster fishing' marketing methods, and statistical data in the eastern provinces of Canada and the coastal states of the United States. The second (Ingersoll, 1887), entitled "The Oyster, Scallop, Clam, Mussel, and Abalone Industries," was a l20-page summary of the first monograph about oysters as well as a history and description of contemporary methods and statistical data of the other shellfisheries. Although Ingersoll was, by profession, a naturalist and author but only briefly a shellfish scientist, these monographs are regarded as benchmarks, providing the principal descriptions of shellfisheries in North America in the 1700's and 1800's.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Skipjack tuna, Katsuwonus pelamis, and yellowfin tuna, Thunnus albacares, together comprise the most important component of Indian Ocean tuna catches. Catches of these species by Indian Ocean fisheries have been increasing over the last decade and totaled 262,300 metric tons (t) in 1986 (Fig. 1; Table 1). Skipjack tuna was the most important species at 32 percent of the total tuna catch in 1986; yellowfin tuna was the second most important at 25 percent. Skipjack tuna are found throughout the Indian Ocean from the Gulf of Arabia in the north to lat. 40°S (Fig. 2). Yellowfin tuna are also distributed throughout the ocean to about lat. 50�

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Basking sharks, Cetorhinus maximus, are frequently observed along the central and northwestern southern California coast during the winter and spring months. These large plankton feeding elasmobranchs, second in size only to the whale shark, Rhineodon typus, had been the subject of a small commercial fishery off California in the late 1940's and early 1950's for their liver oil, rich in vitamin A, and in later years for reduction into fish meal and oil (Roedel and Ripley, 1950). These fisheries were sporadic and did not take basking sharks in large numbers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Blue marlin, Makaira nigricans, tag and recapture data are summarized for 1954-1988. During this period, 8,447 fish have been tagged and only 30 (0.35 percent) have been returned. Results of the tagging program indicate that blue marlin not only travel considerable distances (7,OOO km from the U. S. Virgin Islands to the Ivory Coast of West Africa), but have remained at large for up to 8 years. Seasonal movements, however, are difficult to determine accurately.

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Undaria pinnatifida was registered in Ría Deseado (47º45´S, 65º55´W _ southern Patagonia) by the first time in spring 2005, colonizing the intertidal and shallow subtidal. A seasonal survey in 2006 showed that U. pinnatifida was established in a sheltered zone inside the estuary, along a coastal fringe of 8 km between Punta Cascajo and Cañadón del Puerto. This continuous distribution was only interrupted in the mouth of canyons that flow into Ría Deseado, where the bottom is conformed by mud and sand. The sporophytes were mainly found colonizing the rocky bottom in the lower intertidal, bordering the Macrocystis pyrifera population. The highest density and biomass of sporophytes (12.13 ind. m-2; 254.60 g m-2) were registered during spring, when the population was mainly conformed by individuals of medium sizes. The lowest density and biomass (0.33 ind. m-2; 5.69 g m-2) were registered in autumn. Juvenile sporophytes recruited throughout the year, but presented the highest percentage in the population during autumn and winter. First mature sporophytes appeared in spring and attained their maximum size in summer. After this, the sprophytes decayed and disappeared. Environmental factors such as rocky bottoms availability and water transparency may be the main factors determining the sporophytes distribution in Ría Deseado. The field experiment point out that M. pyrifera population is an important factor controlling the dispersion of U. pinnatifida towards the subtidal. SPANISH: Undaria pinnatifida fue registrada en la Ría Deseado (47º45´ S, 65º55´ W _ Patagonia austral) durante la primavera de 2005, colonizando el intermareal y submareal somero. Los relevamientos estacionales realizados durante el 2006, revelaron que U. pinnatifida se encontró establecida en una zona protegida en el interior de la ría, ocupando una franja costera de aproximadamente 8 km de largo entre Punta Cascajo y el Cañadón del Puerto. Esta distribución casi continua sólo presentó algunas interrupciones en la boca de los cañadones que desembocan en la ría, donde el fondo predominante es de tipo areno-fangoso. Los esporofitos de U. pinnatifida ocuparon preferentemente el fondo rocoso del intermareal inferior, limitando con la población de Macrocystis pyrifera. La densidad y biomasa más altas de esporofitos (12,13 ind. m-2; 254,60 g m-2) fueron registradas en primavera, cuando la población se encontró compuesta principalmente por individuos de tallas intermedias. La densidad y biomasa más bajas (0,33 ind. m-2; 5,69 g m-2) fueron registradas durante el otoño. Los esporofitos juveniles se reclutaron a lo largo de todo el año, pero alcanzaron su mayor proporción en la población durante el otoño y el invierno. Los esporofitos reproductivamente maduros aparecieron durante la primavera y alcanzaron su talla máxima durante el verano, luego del cual comenzaron a deteriorarse y a desaparecer. Factores como la disponibilidad de fondos rocosos y la transparencia de las aguas podrían actuar como los principales factores determinantes de su distribución en la ría. El experimento de campo realizado revela que los bosques de M. pyrifera actúan también como un importante factor de control, limitando la dispersión de U. pinnatifida hacia el submareal.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper provides an overview of the research being carried out at the moment by a group of Argentinean scientists working on the subjects of marine biodiversity and oceanography. When the idea of the Census of Marine Life (CoML)was proposed following the Symposium held during the IAPSO-IABO conference in Mar del Plata in October 2001, there was a wide response from the marine scientific community. Information about current research projects, as well as plans for future work in the context of the CoML, were then obtained from about 70 scientists (Appendix I) belonging to 12 institutions located along the Argentinean coast (Appendix II, Figure 1). This has been used to illustrate what is currently being pursued in marine biodiversity in Argentina and which subjects are considered as priority for future research in the area. This paper is, thus, not an historical update of the knowledge of marine biodiversity, but it attempts to give an idea of the current situation and what is planned for the future. The development of an extensive database of what is known on marine biodiversity in the region is considered to be a necessity, but it constitutes a complete project on its own; as such it is included in the proposals for future work (see Future Work in this paper). It is emphasised that this synthesis is not exhaustive in the content of the topics being studied or in the number of researchers working in marine biodiversity in the country. It is, though, considered to be a representative sample of the knowledge in marine science in Argentina today. This is a starting point for the CoML project in South America and it is hoped that, as it develops, it will be improved by the active participation, advice and experience of many other scientists in the region.