975 resultados para Biodiesel feedstock
Resumo:
O potencial de aplicação de lipases em processos biotecnológicos para a modificação de óleos e gorduras tem sido objeto de grande interesse nos meios científico, econômico e industrial nos últimos anos. Além da atividade de hidrólise de ésteres, as lipases podem catalisar uma grande variedade de reações de esterificação, transesterificação e poliesterificação. A transesterificação inclui acidólise, interesterificação e alcoólise. Neste trabalho reações de alcoólise de óleo de mamona para produção de ésteres de ácidos graxos foram estudadas devido a sua importância na obtenção de, por exemplo, agentes de antifricção, emulsificantes, intermediários para produzir uma numerosa quantidade de oleoquímicos e combustível alternativo ao diesel e/ou aditivo ao diesel de petróleo (biodiesel). Neste contexto, foi estudada a etanólise enzimática de óleo de mamona com lipase comercial (Lipozyme IM) usando n-hexano como solvente. Os experimentos foram realizados variando a temperatura, as concentrações de água e enzima no meio reacional e a razão molar óleo-etanol, de acordo com um planejamento de experimentos pré-estabelecidos. Um modelo empírico foi utilizado para avaliar a influência das variáveis de processo no rendimento e, desta forma, as condições de operação que maximizam a produção de ésteres foram estabelecidas para a enzima utilizada.
Resumo:
The objective of this work is to investigate the production of fatty acid ethyl esters from soybean oil in compressed propane using a non-commercial lipase from Yarrowia lipolytica and two commercial ones as catalysts, Amano PS and Amano AY30. The experiments were performed in the temperature range of 35-65 °C. at 50 bar, enzyme concentration of 5 wt%, oil to ethanol molar ratio of 1:6 and 1:9, and solvent to substrates mass ratio of 2:1 and 4:1. The results indicated that low reaction conversions were generally obtained with the use of commercial and non-commercial lipases in pressurized propane medium. On the other hand, the aspects of low solvent to substrates mass ratio and mild temperature and pressure operating conditions used to produce ethyl esters justify further investigations to improve reaction yields.
Resumo:
Torrefaction is the partial pyrolysis of wood characterised by thermal degradation of predominantly hemicellulose under inert atmosphere. Torrefaction can be likened to coffee roasting but with wood in place of beans. This relatively new process concept makes wood more like coal. Torrefaction has attracted interest because it potentially enables higher rates of co-firing in existing pulverised-coal power plants and hence greater net CO2 emission reductions. Academic and entrepreneurial interest in torrefaction has sky rocketed in the last decade. Research output has focused on the many aspects of torrefaction – from detailed chemical changes in feedstock to globally-optimised production and supply scenarios with which to sustain EU emission-cutting directives. However, despite its seemingly simple concept, torrefaction has retained a somewhat mysterious standing. Why hasn’t torrefied pellet production become fully commercialised? The question is one of feasibility. This thesis addresses this question. Herein, the feasibility of torrefaction in co-firing applications is approached from three directions. Firstly, the natural limitations imposed by the structure of wood are assessed. Secondly, the environmental impact of production and use of torrefied fuel is evaluated and thirdly, economic feasibility is assessed based on the state of the art of pellet making. The conclusions reached in these domains are as follows. Modification of wood’s chemical structure is limited by its naturally existing constituents. Consequently, key properties of wood with regards to its potential as a co-firing fuel have a finite range. The most ideal benefits gained from wood torrefaction cannot all be realised simultaneously in a single process or product. Although torrefaction at elevated pressure may enhance some properties of torrefied wood, high-energy torrefaction yields are achieved at the expense of other key properties such as heating value, grindability, equilibrium moisture content and the ability to pelletise torrefied wood. Moreover, pelletisation of even moderately torrefied fuels is challenging and achieving a standard level of pellet durability, as required by international standards, is not trivial. Despite a reduced moisture content, brief exposure of torrefied pellets to water from rainfall or emersion results in a high level of moisture retention. Based on the above findings, torrefied pellets are an optimised product. Assessment of energy and CO2-equivalent emission balance indicates that there is no environmental barrier to production and use of torrefied pellets in co-firing. A long product transport distance, however, is necessary in order for emission benefits to exceed those of conventional pellets. Substantial CO2 emission reductions appear possible with this fuel if laboratory milling results carry over to industrial scales for direct co-firing. From demonstrated state-of-the-art pellet properties, however, the economic feasibility of torrefied pellet production falls short of conventional pellets primarily due to the larger capital investment required for production. If the capital investment for torrefied pellet production can be reduced significantly or if the pellet-making issues can be resolved, the two production processes could be economically comparable. In this scenario, however, transatlantic shipping distances and a dry fuel are likely necessary for production to be viable. Based on demonstrated pellet properties to date, environmental aspects and production economics, it is concluded that torrefied pellets do not warrant investment at this time. However, from the presented results, the course of future research in this field is clear.
Resumo:
Para várias espécies vegetais, testes como o de germinação não tem seus procedimentos descritos nas Regras para Análise de Sementes (RAS) utilizadas no Brasil pela falta de padronização e validação metodológica. Dentre elas, o nabo forrageiro, que tem sido considerada uma cultura promissora para a produção de biodiesel, tem sua germinação avaliada por metodologia recomendado para a espécie Raphanus sativus , mas tem especificidade de variedade (var oleiferus) com características de plantas e sementes, que diferem das demais variedades da espécie. Para assegurar a padronização de metodologias para o comércio internacional de sementes é necessário estabelecer critérios para validação de metodologia, cuja descrição deve ser clara e completa com procedimentos que propiciem exatidão, robustez, precisão (reprodutibilidade e repetibilidade). O objetivo neste estudo foi avaliar o processo de validação de duas metodologias para o teste de germinação em sementes de nabo forrageiro, utilizando para as análises estatísticas o procedimento padrão da ISTA, bem como técnicas complementares. Os testes de germinação foram realizados em oito laboratórios com cinco lotes, utilizando substrato areia e papel em temperatura alternada 20-30 ºC. As técnicas estatísticas foram utilizadas para: verificar a homogeneidade dos lotes (teste H), identificar a presença de valores discrepantes (método de Hampel) e outliers nas variâncias (teste de Levene para média); avaliar os efeitos de laboratórios e lotes (Análise de Variância); verificar a repetibilidade, reprodutibilidade, exatidão e robustez (limites críticos de repetibilidade, reprodutibilidade, estatísticas h e k de Mandel), comparar as diferentes metodologias de germinação (testes F) e reavaliar o nível de qualidade dos lotes (Análise Discriminante). Tanto no aspecto estatístico, como fitotécnico, as metodologias para o teste de germinação em sementes de nabo forrageiro com a utilização do substrato areia e papel, temperatura alternada 20-30 ºC podem ser considerados validadas, pois apresentam exatidão, robustez e precisão adequadas.
Resumo:
Dentro das oleaginosas com potencial para produção de biodiesel, a mamona apresenta bom desenvolvimento e produtividade na região Sul do RS, porém são poucos os estudos relacionados à tecnologia de produção de sementes. Neste sentido, o objetivo deste trabalho foi avaliar a influência da época de semeadura e da ordem dos racemos, na qualidade das sementes das cultivares AL Guarany 2002 e IAC 80. Para tanto, foram implantados experimentos em dois locais, na safra 2006/07, no município de Canguçu. As cultivares foram semeadas em duas épocas (novembro e dezembro). Foram avaliadas as sementes provenientes das diferentes ordens, quanto às qualidades física e fisiológica. O delineamento experimental foi o de blocos ao acaso com três repetições, em esquema fatorial 2x3 (época x ordem) para cultivar AL Guarany 2002, e esquema fatorial 2x2 (época x ordem) para a cultivar IAC 80 no local Florida e para semeadura de novembro no local Passo do Quilombo. No local Passo do Quilombo foi analisado somente efeito de época na primeira ordem de floração e efeito de ordem de racemo na semeadura de novembro. De acordo com os resultados, a qualidade física das sementes, peso de mil sementes e peso volumétrico, são afetado pela ordem de racemo e época de semeadura; a cultivar AL Guarany 2002 produz sementes com padrão de qualidade fisiológica na semeadura de novembro, independentemente da ordem de racemo e; a cultivar IAC 80 produz sementes com padrão de qualidade fisiológica, na semeadura de novembro, primeira ordem de racemo.
Resumo:
Castor bean fruits are already used for biodiesel production but obtaining quality seeds is still a challenge. Seed cleaning improves lot quality but little is known about the effects of upgrading castor bean seed lots on a densimetric table. The objective of this study was to evaluate the influence of cleaning castor bean seed lots on a densimetric table on their physical, physiological and sanitary characteristics. Two commercial lots of the AL Guarani 2002 cultivar, separated into five categories according to their classification on a densimetric table (uncleaned and low, low intermediate, high intermediate and high outlets), were evaluated. Tests for the yield, one-thousand seed weight, germination, seedling emergence, electrical conductivity and seed health were performed. The classification of castor bean seeds on a densimetric table significantly improved the physical, physiological and sanitary quality of commercial seed lots. The physiological response of the different classified lots varied according to their initial weight. Castor bean seeds separated on a densimetric table for the upper outlet showed a better physical, physiological and sanitary quality compared to those for the lower outlet.
Resumo:
O niger (Guizotia abyssinica Cass.) é uma herbácea anual com potencial para produção de biodiesel, porém com poucas informações referentes à qualidade de suas sementes. Com isso, objetivou-se determinar as temperaturas e substratos para a germinação e desenvolvimento inicial de plântulas, além de caracterizar morfologicamente as sementes e plântulas. Foram determinados o peso de mil sementes, grau de umidade, massa, comprimento, largura e espessura das sementes. No teste de germinação foram utilizadas quatro temperaturas constantes sob luz branca constante (15 °C, 20 °C, 25 °C e 30 °C) e uma temperatura alternada (20-30 °C) sob regime de 10 horas de escuro e 14 horas de luz branca para a temperatura mais elevada e dois substratos (entre papel e sobre papel). Foram determinadas as curvas de embebição das sementes, a germinação, o índice de velocidade de germinação, o tempo médio de germinação e o comprimento e massa seca de plântulas. As sementes de niger possuem dimensões semelhantes entre si, média de 4,54 mm de comprimento, 1,39 mm de largura, 1,15 mm de espessura e 0,0043 g de peso. As temperaturas 20-30 °C e 25 °C e ambos os substratos testados são eficientes para a condução do teste de germinação em sementes de niger.
Resumo:
The production of biodiesel through transesterification has created a surplus of glycerol on the international market. In few years, glycerol has become an inexpensive and abundant raw material, subject to numerous plausible valorisation strategies. Glycerol hydrochlorination stands out as an economically attractive alternative to the production of biobased epichlorohydrin, an important raw material for the manufacturing of epoxy resins and plasticizers. Glycerol hydrochlorination using gaseous hydrogen chloride (HCl) was studied from a reaction engineering viewpoint. Firstly, a more general and rigorous kinetic model was derived based on a consistent reaction mechanism proposed in the literature. The model was validated with experimental data reported in the literature as well as with new data of our own. Semi-batch experiments were conducted in which the influence of the stirring speed, HCl partial pressure, catalyst concentration and temperature were thoroughly analysed and discussed. Acetic acid was used as a homogeneous catalyst for the experiments. For the first time, it was demonstrated that the liquid-phase volume undergoes a significant increase due to the accumulation of HCl in the liquid phase. Novel and relevant features concerning hydrochlorination kinetics, HCl solubility and mass transfer were investigated. An extended reaction mechanism was proposed and a new kinetic model was derived. The model was tested with the experimental data by means of regression analysis, in which kinetic and mass transfer parameters were successfully estimated. A dimensionless number, called Catalyst Modulus, was proposed as a tool for corroborating the kinetic model. Reactive flash distillation experiments were conducted to check the commonly accepted hypothesis that removal of water should enhance the glycerol hydrochlorination kinetics. The performance of the reactive flash distillation experiments were compared to the semi-batch data previously obtained. An unforeseen effect was observed once the water was let to be stripped out from the liquid phase, exposing a strong correlation between the HCl liquid uptake and the presence of water in the system. Water has revealed to play an important role also in the HCl dissociation: as water was removed, the dissociation of HCl was diminished, which had a retarding effect on the reaction kinetics. In order to obtain a further insight on the influence of water on the hydrochlorination reaction, extra semi-batch experiments were conducted in which initial amounts of water and the desired product were added. This study revealed the possibility to use the desired product as an ideal “solvent” for the glycerol hydrochlorination process. A co-current bubble column was used to investigate the glycerol hydrochlorination process under continuous operation. The influence of liquid flow rate, gas flow rate, temperature and catalyst concentration on the glycerol conversion and product distribution was studied. The fluid dynamics of the system showed a remarkable behaviour, which was carefully investigated and described. Highspeed camera images and residence time distribution experiments were conducted to collect relevant information about the flow conditions inside the tube. A model based on the axial dispersion concept was proposed and confronted with the experimental data. The kinetic and solubility parameters estimated from the semi-batch experiments were successfully used in the description of mass transfer and fluid dynamics of the bubble column reactor. In light of the results brought by the present work, the glycerol hydrochlorination reaction mechanism has been finally clarified. It has been demonstrated that the reactive distillation technology may cause drawbacks to the glycerol hydrochlorination reaction rate under certain conditions. Furthermore, continuous reactor technology showed a high selectivity towards monochlorohydrins, whilst semibatch technology was demonstrated to be more efficient towards the production of dichlorohydrins. Based on the novel and revealing discoveries brought by the present work, many insightful suggestions are made towards the improvement of the production of αγ-dichlorohydrin on an industrial scale.
Resumo:
La production biologique d'hydrogène (H2) représente une technologie possible pour la production à grande échelle durable de H2 nécessaire pour l'économie future de l'hydrogène. Cependant, l'obstacle majeur à l'élaboration d'un processus pratique a été la faiblesse des rendements qui sont obtenus, généralement autour de 25%, bien en sous des rendements pouvant être atteints pour la production de biocarburants à partir d'autres processus. L'objectif de cette thèse était de tenter d'améliorer la production d'H2 par la manipulation physiologique et le génie métabolique. Une hypothèse qui a été étudiée était que la production d'H2 pourrait être améliorée et rendue plus économique en utilisant un procédé de fermentation microaérobie sombre car cela pourrait fournir la puissance supplémentaire nécessaire pour une conversion plus complète du substrat et donc une production plus grande d'H2 sans l'aide de l'énergie lumineuse. Les concentrations optimales d’O2 pour la production de H2 microaérobie ont été examinées ainsi que l'impact des sources de carbone et d'azote sur le processus. La recherche présentée ici a démontré la capacité de Rhodobacter capsulatus JP91 hup- (un mutant déficient d’absorption-hydrogénase) de produire de l'H2 sous condition microaérobie sombre avec une limitation dans des quantités d’O2 et d'azote fixé. D'autres travaux devraient être entrepris pour augmenter les rendements d'H2 en utilisant cette technologie. De plus, un processus de photofermentation a été créé pour améliorer le rendement d’H2 à partir du glucose à l'aide de R. capsulatus JP91 hup- soit en mode non renouvelé (batch) et / ou en conditions de culture en continu. Certains défis techniques ont été surmontés en mettant en place des conditions adéquates de fonctionnement pour un rendement accru d'H2. Un rendement maximal de 3,3 mols de H2/ mol de glucose a été trouvé pour les cultures en batch tandis que pour les cultures en continu, il était de 10,3 mols H2/ mol de glucose, beaucoup plus élevé que celui rapporté antérieurement et proche de la valeur maximale théorique de 12 mols H2/ mol de glucose. Dans les cultures en batch l'efficacité maximale de conversion d’énergie lumineuse était de 0,7% alors qu'elle était de 1,34% dans les cultures en continu avec un rendement de conversion maximum de la valeur de chauffage du glucose de 91,14%. Diverses autres approches pour l'augmentation des rendements des processus de photofermentation sont proposées. Les résultats globaux indiquent qu'un processus photofermentatif efficace de production d'H2 à partir du glucose en une seule étape avec des cultures en continu dans des photobioréacteurs pourrait être développé ce qui serait un processus beaucoup plus prometteur que les processus en deux étapes ou avec les co-cultures étudiés antérieurément. En outre, l'expression hétérologue d’hydrogenase a été utilisée comme une stratégie d'ingénierie métabolique afin d'améliorer la production d'H2 par fermentation. La capacité d'exprimer une hydrogénase d'une espèce avec des gènes de maturation d'une autre espèce a été examinée. Une stratégie a démontré que la protéine HydA orpheline de R. rubrum est fonctionnelle et active lorsque co-exprimée chez Escherichia coli avec HydE, HydF et HydG provenant d'organisme différent. La co-expression des gènes [FeFe]-hydrogénase structurels et de maturation dans des micro-organismes qui n'ont pas une [FeFe]-hydrogénase indigène peut entraîner le succès dans l'assemblage et la biosynthèse d'hydrogénase active. Toutefois, d'autres facteurs peuvent être nécessaires pour obtenir des rendements considérablement augmentés en protéines ainsi que l'activité spécifique des hydrogénases recombinantes. Une autre stratégie a consisté à surexprimer une [FeFe]-hydrogénase très active dans une souche hôte de E. coli. L'expression d'une hydrogénase qui peut interagir directement avec le NADPH est souhaitable car cela, plutôt que de la ferrédoxine réduite, est naturellement produit par le métabolisme. Toutefois, la maturation de ce type d'hydrogénase chez E. coli n'a pas été rapportée auparavant. L'opéron hnd (hndA, B, C, D) de Desulfovibrio fructosovorans code pour une [FeFe]-hydrogénase NADP-dépendante, a été exprimé dans différentes souches d’E. coli avec les gènes de maturation hydE, hydF et hydG de Clostridium acetobutylicum. L'activité de l'hydrogénase a été détectée in vitro, donc une NADP-dépendante [FeFe]-hydrogénase multimérique active a été exprimée avec succès chez E. coli pour la première fois. Les recherches futures pourraient conduire à l'expression de cette enzyme chez les souches de E. coli qui produisent plus de NADPH, ouvrant la voie à une augmentation des rendements d'hydrogène via la voie des pentoses phosphates.
Resumo:
Biodiesel production using microalgae is attractive in a number of respects. Here a number of pros and cons to using microalgae for biofuels production are reviewed. Algal cultivation can be carried out using non-arable land and non-potable water with simple nutrient supply. In addition, algal biomass productivities are much higher than those of vascular plants and the extractable content of lipids that can be usefully converted to biodiesel, triacylglycerols (TAGs) can be much higher than that of the oil seeds now used for first generation biodiesel. On the other hand, practical, cost-effective production of biofuels from microalgae requires that a number of obstacles be overcome. These include the development of low-cost, effective growth systems, efficient and energy saving harvesting techniques, and methods for oil extraction and conversion that are environmentally benign and cost-effective. Promising recent advances in these areas are highlighted.
Resumo:
A recently established strain collection of freshwater microalgae native to Quebec was examined for physiological diversity. The 100 strains appeared very heterogeneous in terms of growth when they were cultured at 10±2 °C or 22±2 °C on the secondary effluent from a municipal wastewater treatment plant (WW) and defined BBM medium. Scatterplots were used to examine the diversity in physiology that might be present in the collection. These showed a number of interesting results. There was a fair amount of dispersion in growth rates by media type independent of temperature. Surprisingly considering that all the isolates had been initially enriched on BBM, the distribution was quite symmetrical around the iso-growth line, suggesting that enrichment on BBM did not seem to bias the cells for growth on this medium versus WW. As well, considering that all the isolates had been initially enriched at 22 °C, it is quite surprising that the distribution of specific growth rates was quite symmetrical around the iso-growth line with roughly equal numbers of isolates found on either side. Thus enrichment at 22 °C does not seem to bias the cells for growth at this temperature versus 10°C. The scatterplots obtained when the percentage lipid of cultures grown on BBM were compared with cultures grown on WW at either 10 °C or 22 °C made it apparent that lipid production was favored by growth on WW at either temperature and that lipid production does not seem to be particularly favored by one temperature over the other. When the collection was queried for differences with respect to sampling location, statistical analysis showed that roughly the same degree of physiological diversity was found with samples from the two different aggregate locations.
Resumo:
Rampant increases in oil prices and detrimental effects of fossil fuels on the environment have been the main impetus for the development of environmentally friendly and sustainable energy sources. Amongst the many possibilities, microalgae have been proposed as a new alternative energy source to fossil fuels, as their growth is both sustainable and ecologically safe. By definition, microalgae are unicellular photosynthetic microorganisms containing chlorophyll a. These organisms are capable of producing large quantities of oils, surpassing that of traditional oil-seed crops, which can be transformed, through chemical processes, into biofuels such as biodiesel or bio-gasoline. Thus, recent research has gone into discovering high lipid producing algal strains, optimising growth media for increased lipid production and developing metabolic engineering to make microalgae a source of biofuel that is competitive to more traditional sources of biofuel and even to fossil fuel. In this context, the research reported here focused on using a mixotrophic growth mode as a way to increase lipid production for certain strains of microalgae. In addition, nitrogen starvation combined with mixotrophy was studied to analyse its effects on lipid production. Mixotrophy is the parallel usage of two trophic modes, in our case photoautotrophy and heterotrophy. Consequently, 12 algal strains were screened for mixotrophic growth, using glycerol as a carbon source. Glycerol is a waste product of the current biodiesel industry; it is a cheap and abundant carbon source present in many metabolic pathways. From this initial screening, several strains were chosen for subsequent experiments involving nitrogen starvation. Nitrogen starvation has been shown to induce lipid accumulation. The results obtained show that a mixotrophic growth mode, using glycerol as a carbon source, enhances lipid production for certain strains. Moreover, lipid enhancement was shown for nitrogen starvation combined with mixotrophic growth mode. This was dependant on time spent under nitrogen starvation and on initial concentrations of the nitrogen source.
Resumo:
The present study indicate the scope for the utilization of the marine fungus Aspergillus awamori Nagazawa BTMFW 032 for extracellular lipase production employing submerged fermentation. To the best of our knowledge this is the first report on lipase production by a marine fungus employing statistical modeling towards industrial production. The characterization of purified lipase produced by A. awamori showed stability in organic solvents, oxidizing agent and reducing agents, I,3-regiospecificity and hydrolytic activity. These properties make this lipase an ideal candidate for biocatalysis in organic media for the production of novel compounds such as biodiesel and sugar fatty esters. 91.4 % reduction in oil and grease content in ayurvedic oil by the treatment of A. awamori lipase indicates that there is a scope for this enzyme in the treatment of oil effluents and bioremediation. There is ample scope for further research on the biochemistry of the enzyme, structure elucidation and enzyme engineering towards a wide range of further applications, besides enriching scientific knowledge on marine enzymes.
Resumo:
Given the economic importance of Jatropha curcas, and its limited availability in the wild, it would be desirable to establish plantations ofthe tree so as to obtain assured supply of raw material for extraction of phytochemicals, and seeds for production of biodiesel. However both seed propagation as well as propagation by cuttings is unsatisfactory in this tree species. Seeds have poor viability and are genetically heterozygous leading to genetic variability in terms of growth, biomass, seed yield, and oil content. Stern cuttings have poor roots and the trees are easily uprooted. Tissue culture techniques could possibly be gainfully employed in the propagation of elite plants ofJaIropha. When plant tissue is passaged through in vitro culture, there is possibility of induction of variations. An estimation of somaclonal variability is useful in a determination of culture protocols. Molecular markers could be employed to estimate the amount of variations induced in callus and regenerants by different honnonal combinations used in culture. In this context the present study aims to develop an in vitro propagation protocol for the production of plantlets and to evaluate the variation induced in callus and regenerants in comparison with mother plant by the use of molecular markers and by studying phytochemicals and bio active compounds present in callus and regenerated plants
Resumo:
Moringa oleifera is becoming increasingly popular as an industrial crop due to its multitude of useful attributes as water purifier, nutritional supplement and biofuel feedstock. Given its tolerance to sub-optimal growing conditions, most of the current and anticipated cultivation areas are in medium to low rainfall areas. This study aimed to assess the effect of various irrigation levels on floral initiation, flowering and fruit set. Three treatments namely, a 900 mm (900IT), 600 mm (600IT) and 300 mm (300IT) per annum irrigation treatment were administered through drip irrigation, simulating three total annual rainfall amounts. Individual inflorescences from each treatment were tagged during floral initiation and monitored throughout until fruit set. Flower bud initiation was highest at the 300IT and lowest at the 900IT for two consecutive growing seasons. Fruit set on the other hand, decreased with the decrease in irrigation treatment. Floral abortion, reduced pollen viability as well as moisture stress in the style were contributing factors to the reduction in fruiting/yield observed at the 300IT. Moderate water stress prior to floral initiation could stimulate flower initiation, however, this should be followed by sufficient irrigation to ensure good pollination, fruit set and yield.