956 resultados para Bio-syngas
Resumo:
La especie Sorghum bicolor (L.) Moench., perteneciente a la familia de las gramíneas (Poaceae), es una planta de origen tropical, sensible al fotoperiodo y a la temperatura, que muestra una alta eficiencia fotosintética en condiciones adecuadas de cultivo.
Resumo:
The analysis of the interference modes has an increasing application, especially in the field of optical biosensors. In this type of sensors, the displacement Δν of the interference modes of the transduction signal is observed when a particular biological agent is placed over the biosensor. In order to measure this displacement, the position of a maximum (or a minimum) of the signal must be detected before and after placing the agent over the sensor. A parameter of great importance for this kind of sensors is the period Pν of the signal, which is inversely proportional to the optical thickness h0 of the sensor in the absence of the biological agent. The increase of this period improves the sensitivity of the sensor but it worsens the detection of the maximum. In this paper, authors analyze the propagation of uncertainties in these sensors when using least squares techniques for the detection of the maxima (or minima) of the signal. Techniques described in supplement 2 of the ISO-GUM Guide are used. The result of the analysis allows a metrological educated answer to the question of which is the optimal period Pν of the signal. El análisis del comportamiento de los modos de interferencia tiene una aplicación cada vez más amplia, especialmente en el campo de los biosensores ópticos. En este tipo de sensores se observa el desplazamiento Δν de los modos de interferencia de la señal de transducción al reconocer un de-terminado agente biológico. Para medir ese desplazamiento se debe detectar la posición de un máximo o mínimo de la señal antes y después de dicho desplazamiento. En este tipo de biosensores un parámetro de gran importancia es el periodo Pν de la señal el cual es inversamente proporcional al espesor óptico h0 del sensor en ausencia de agente biológico. El aumento de dicho periodo mejora la sensibilidad del sensor pero parece dificultar la detección del mínimo o máximo. Por tanto, su efecto sobre la incertidumbre del resultado de la medida presenta dos efectos contrapuestos: la mejora de la sensibilidad frente a la dificultad creciente en la detección del mínimo ó máximo. En este trabajo, los autores analizan la propagación de incertidumbres en estos sensores utilizando herramientas de ajuste por MM.CC. para la detección de los mínimos o máximos de la señal y técnicas de propagación de incertidumbres descritas en el suplemento 2 de la Guía ISO-GUM. El resultado del análisis permite dar una respuesta, justificada desde el punto de vista metrológico, de en que condiciones es conveniente o no aumentar el periodo Pν de la señal.
Resumo:
The "Bio-climatic Design Handbook: guidelines for the development of planning regulations" is a tool for urban planning and design professionals planning for the construction of public space taking into account bioclimatic and environmental standards. Based on environmental conditions assessment, urban design guidelines are given. These take into account various scales; from the territory to the microclimatic reality. From these general keys for the design of public space the handbook performs recommendations on specific case studies. The application of bioclimatic techniques in urban design promotes comfort in the public space and the respect for the existing environment, while it influences the energy consumption of buildings that conform this open space. The tool was developed in the context of BIOURB project, where Spain and Portugal cooperate writing this bilingual handbook. The case studies are located in this cross-border region.
Resumo:
This paper presents a new simulation environment aimed at heterogeneous chained modular robots. This simulator allows testing the feasibility of the design, checking how modules are going to perform in the field and verifying hardware, electronics and communication designs before the prototype is built, saving time and resources. The paper shows how the simulator is built and how it can be set up to adapt to new designs. It also gives some examples of its use showing different heterogeneous modular robots running in different environments.
Resumo:
Projections for world food production and prices play a crucial role to evaluate and tackle future food security challenges. Understanding how these projections will be affected by climate change is the main objective of this study. By means of a bio-economic approach we assess the economic impacts of climate change on agrifood markets, providing both a global analysis and a regionalised evaluation within the EU. To account for uncertainty, we analyse the IPCC emission scenario A1B for the 2030 horizon under several simulation scenarios that differ in (1) the climate projection, from HadleyCM3 (warm) or ECHAM5 (mild) global circulation models; and (2) the influence of CO2 effects. Results of this study indicate that agrifood market projections to 2030 are very sensitive to climate change uncertainties and, in particular to the magnitude of the carbon fertilization effect.
Resumo:
Tungsten disulphide nanotubes (INT-WS2) have been successfully dispersed in a bio-based polyamide matrix (nylon 11) by conventional melt processing. The effect of INT-WS2 content on the morphology, thermal stability, crystallization behaviour and dynamic mechanical properties is investigated. The results indicate that these inorganic nanotubes can be efficiently incorporated into the bio-based polymer matrix without the need for modifiers or surfactants. Additionally, it is found that the non-isothermal crystallization behaviour of nylon 11/INT-WS2 depends on both the cooling rate and INT-WS2 concentration. In particular, crystallization kinetics results demonstrate that the nucleating activity of INTs plays a dominant role in accelerating the crystallization of nylon 11. This fact leads to the appearance of the more-disordered phase at higher temperature. More significantly, it was shown that these INT-WS2 nanocomposites can facilitate a good processability and cost efficiency, and will be of interest for many eco-friendly and medical applications.
Resumo:
A rápida evolução do mercado automotivo, em função de maiores restrições sobre as emissões, impulsionou a utilização de várias alternativas para melhorias dos motores diesel, entre elas as mudanças nos seus componentes com o auxílio de ferramentas de modelagem e a utilização de combustíveis alternativos. As características dos combustíveis afetarão a queima e, assim, alteram os resíduos do processo de combustão. Novos combustíveis podem também ser utilizados como uma alternativa para veículos de gerações anteriores com o intuito de reduzir as emissões. Este estudo mostra os efeitos da utilização do Biodiesel B20 e do Biodiesel Amyris em motores de combustão interna. Para isso, foram realizados testes de motores em salas dinamométricas, e seus resultados confrontados e discutidos. Além disso, são abordados os efeitos do combustível no processo da combustão. Esta Dissertação está concentrada, principalmente, na emissão de NOx e de material particulado, que são poluentes mais restritivos perante a Legislação brasileira de emissões CONAMA P7.
Resumo:
Bio-fuels such as ethanol provide an extraordinary opportunity to address our dependency on foreign oil. This case study examines the economic and environmental impacts associated with constructing and operating a dry mill ethanol manufacturing facility in a Southwest Georgia town and surrounding communities. The case study found that the plant had little impact on air quality, water quality, and habitat fragmentation. However, economic results showed the plant produced $1.5 million in tax revenues, and 86 jobs. Ethanol producers and communities must consider both the economic and environmental impacts on a local community when searching or attracting a bio-fuels plant. Likewise, communities should be aware of these challenges when attracting ethanol production plants.
Resumo:
Glutaraldehyde is one of the most widely used reagents in the design of biocatalysts. It is a powerful crosslinker, able to react with itself, with the advantages that this may bring forth. In this review, we intend to give a general vision of its potential and the precautions that must be taken when using this effective reagent. First, the chemistry of the glutaraldehyde/amino reaction will be commented upon. This reaction is still not fully clarified, but it seems to be based on the formation of 6-membered heterocycles formed by 5 C and one O. Then, we will discuss the production of intra- and inter-molecular enzyme crosslinks (increasing enzyme rigidity or preventing subunit dissociation in multimeric enzymes). Special emphasis will be placed on the preparation of cross-linked enzyme aggregates (CLEAs), mainly in enzymes that have low density of surface reactive groups and, therefore, may be problematic to obtain a final solid catalyst. Next, we will comment on the uses of glutaraldehyde in enzymes previously immobilized on supports. First, the treatment of enzymes immobilized on supports that cannot react with glutaraldehyde (only inter and intramolecular cross-linkings will be possible) to prevent enzyme leakage and obtain some enzyme stabilization via cross-linking. Second, the cross-linking of enzymes adsorbed on aminated supports, where together with other reactions enzyme/support crosslinking is also possible; the enzyme is incorporated into the support. Finally, we will present the use of aminated supports preactivated with glutaraldehyde. Optimal glutaraldehyde modifications will be discussed in each specific case (one or two glutaraldehyde molecules for amino group in the support and/or the protein). Using preactivated supports, the heterofunctional nature of the supports will be highlighted, with the drawbacks and advantages that the heterofunctionality may have. Particular attention will be paid to the control of the first event that causes the immobilization depending on the experimental conditions to alter the enzyme orientation regarding the support surface. Thus, glutaraldehyde, an apparently old fashioned reactive, remains the most widely used and with broadest application possibilities among the compounds used for the design of biocatalyst.
Resumo:
Pyrolysis and gasification of two different sludges coming from a Spanish refinery have been performed at different experimental conditions. A physico-chemical (PC) and a biological (BIO) sludge have been studied. Runs at different heating rates (approx. 4 and 10 K/s) and with different contact time between gases and decomposed sludge have been performed. In general, the ratio H2/CO is higher in pyrolytic runs. The highest ratio is obtained in the pyrolysis at low heating rate and parallel flow, using both sludges. The maximum emission of CO, i.e. the worst combustion conditions, is given in the runs where contact time is minimized and at high heating rates.
Resumo:
There is a growing need within the footwear sector to customise the design of the last from which a specific footwear style is to be produced. This customisation is necessary for user comfort and health reasons, as the user needs to wear a suitable shoe. For this purpose, a relationship must be established between the user foot and the last with which the style will be made; up until now, no model has existed that integrates both elements. On the one hand, traditional customised footwear manufacturing techniques are based on purely artisanal procedures which make the process arduous and complex; on the other hand, geometric models proposed by different authors present the impossibility of implementing them in an industrial environment with limited resources for the acquisition of morphometric and structural data for the foot, apart from the fact that they do not prove to be sufficiently accurate given the non-similarity of the foot and last. In this paper, two interrelated geometric models are defined, the first, a bio-deformable foot model and the second, a deformable last model. The experiments completed show the goodness of the model, with it obtaining satisfactory results in terms of comfort, efficiency and precision, which make it viable for use in the sector.