967 resultados para Bible and geology


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Tamborine Mt area is a popular residential and tourist area in the Gold Coast hinterland, SE Qld. The 15km2 area occurs on elevated remnant Tertiary Basalts of the Beechmont Group, which comprise a number of mappable flow units originally derived from the Tweed volcanic centre to the south. The older Albert Basalt (Tertiary), which underlies the Beechmont Basalt at the southern end of the investigation area, is thought to be derived from the Focal Peak volcanic centre to the south west. The Basalts contain a locally significant ‘un-declared’ groundwater resource, which is utilised by the Tamborine Mt community for: • domestic purposes to supplement rainwater tank supplies, • commercial scale horticulture and • commercial export off-Mountain for bottled water. There is no reticulated water supply, and all waste water is treated on-site through domestic scale WTPs. Rainforest and other riparian ecosystems that attract residents and tourist dollars to the area, are also reliant on the groundwater that discharges to springs and surface streams on and around the plateau. Issues regarding a lack of compiled groundwater information, groundwater contamination, and groundwater sustainability are being investigated by QUT, utilising funding provided by the Federal Government’s ‘Caring for our Country’ programme through SEQ Catchments Ltd. The objectives of the two year project, which started in April 2009, are to: • Characterise the nature and condition of groundwater / surface water systems in the Tamborine Mountain area in terms of the issues being raised; • Engage and build capacity within the community to source local knowledge, encourage participation, raise awareness and improve understanding of the impacts of land and water use; • Develop a stand-alone 3D Visualisation model for dissemination into the community and use as a communication tool.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of stable isotope ratios δ18O and δ2H are well established in assessment of groundwater systems and their hydrology. The conventional approach is based on x/y plots and relation to various MWL’s, and plots of either ratio against parameters such as Clor EC. An extension of interpretation is the use of 2D maps and contour plots, and 2D hydrogeological vertical sections. An enhancement of presentation and interpretation is the production of “isoscapes”, usually as 2.5D surface projections. We have applied groundwater isotopic data to a 3D visualisation, using the alluvial aquifer system of the Lockyer Valley. The 3D framework is produced in GVS (Groundwater Visualisation System). This format enables enhanced presentation by displaying the spatial relationships and allowing interpolation between “data points” i.e. borehole screened zones where groundwater enters. The relative variations in the δ18O and δ2H values are similar in these ambient temperature systems. However, δ2H better reflects hydrological processes, whereas δ18O also reflects aquifer/groundwater exchange reactions. The 3D model has the advantage that it displays borehole relations to spatial features, enabling isotopic ratios and their values to be associated with, for example, bedrock groundwater mixing, interaction between aquifers, relation to stream recharge, and to near-surface and return irrigation water evaporation. Some specific features are also shown, such as zones of leakage of deeper groundwater (in this case with a GAB signature). Variations in source of recharging water at a catchment scale can be displayed. Interpolation between bores is not always possible depending on numbers and spacing, and by elongate configuration of the alluvium. In these cases, the visualisation uses discs around the screens that can be manually expanded to test extent or intersections. Separate displays are used for each of δ18O and δ2H and colour coding for isotope values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Lockyer Valley in southeast Queensland supports important and intensive irrigation which is dependant on the quality and availability of groundwater. Prolonged drought conditions from ~1997 resulted in a depletion of the alluvial aquifers, and concern for the long-term sustainability of this resource. By 2008, many areas of the valley were at < 20% of storage. Some relief occurred with rain events in early 2009, then in December 2010 - January 2011, most of southeast Queensland experienced unprecedented flooding. These storm-based events have caused a shift in research focus from investigations of drought conditions and mitigation to flood response analysis. For the alluvial aquifer system of the valley, a preliminary assessment of groundwater observation bore data, prior to and during the flood, indicates that there is a spatially variable aquifer response. While water levels in some bores screened in unconfined shallow aquifers have recovered by more than 10 m within a short period of time (months), others show only a small or moderate response. Measurements of pre- and post-flood groundwater levels and high-resolution time-series records from data loggers are considered within the framework of a 3D geological model of the Lockyer Valley using Groundwater Visualisation System(GVS). Groundwater level fluctuations covering both drought and flood periods are used to estimate groundwater recharge using the water table fluctuation method (WTF), supplemented by estimates derived using chloride mass balance. The presentation of hydraulic and recharge information in a 3D format has considerable advantages over the traditional 2D presentation of data. The 3D approach allows the distillation of multiple types of information(topography, geological, hydraulic and spatial) into one representation that provides valuable insights into the major controls of groundwater flow and recharge. The influence of aquifer lithology on the spatial variability of groundwater recharge is also demonstrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blooms of the toxic cyanobacterium majuscula Lyngbya in the coastal waters of southeast Queensland have caused adverse impacts on both environmental health and human health, and on local economies such as fishing and tourism. A number of studies have confirmed that the main limiting nutrients (“nutrients of concern”) that contribute to these blooms area Fe, DOC, N, P and also pH. This study is conducted to establish the distribution of these parameters in a typical southeast Queensland coastal setting. The study maps the geochemistry of shallow groundwater in the mainland Pumicestone catchment with an emphasis on the nutrients of concern to understand how these nutrients relate to aquifer materials, landuse and anthropogenic activities. The results of the study form a GIS information layer which will be incorporated into a larger GIS model being produced by Queensland Department of Environment and Resource Management (DERM) to support landuse management to avoid/minimize blooms of Lyngbya in Moreton Bay, southeast Queensland, and other similar settings. A total of 38 boreholes were established in the mainland Pumicestone region and four sampling rounds of groundwater carried out in both dry and wet conditions. These groundwater samples were measured in the field for physico-chemical parameters, and in the laboratory analyses for the nutrients of concern, and other major and minor ions. Aquifer materials were confirmed using the Geological Survey of Queensland digital geology map, and geomaterials were assigned to seven categories which are A (sands), B (silts, sandy silts), C (estuarine mud, silts), D (humid soils), E (alluvium), F (sandstone) and G (other bedrock). The results of the water chemistry were examined by use of the software package AquaChem/AqQA, and divided into six groundwater groups, based on groundwater chemical types and location of boreholes. The type of aquifer material and location, and proximity to waterways was found to be important because they affected physico-chemical properties and concentrations of nutrients of concern and dissolved ions. The analytical results showed that iron concentrations of shallow groundwaters were high due to acid sulfate soils, and also mud and silt, but were lower in sand materials. DOC concentrations of these shallow groundwaters in the sand material were high probably due to rapid infiltration. In addition, DOC concentrations in some boreholes were high because they were installed in organic rich wetlands. The pH values of boreholes were from acidic to near neutral; some boreholes with pH values were low (< 4), showing acid sulfate soils in these boreholes. Concentrations of total nitrogen and total phosphorus of groundwaters were generally low, and the main causes of elevated concentrations of total nitrogen and total phosphorus are largely due to animal and human wastes and tend to be found in localized source areas. Comparison of the relative percentage of nitrogen species (NH3/NH4< Org-N, NO3-N and NO2-N) demonstrated that they could be related to sources such as animal waste, residential and agricultural fertilizers, forest and vegetation, mixed residents and farms, and variable setting and vegetation covers. Total concentrations of dissolved ions in sampling round 3 (dry period) were higher than those in sampling round 2 (wet period) due to both evaporation of groundwater in the dry period and the dilution of rainfall in the wet period. This showed that the highest concentrations of nutrients of concern were due to acid sulfate soils, aquifer materials, landuse and anthropogenic activities and were typically in aquifer materials of E (alluvium) and C (estuarine muds) and locations of Burpengary, Caboolture, and Glass Mountain catchments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concerns regarding groundwater contamination with nitrate and the long-term sustainability of groundwater resources have prompted the development of a multi-layered three dimensional (3D) geological model to characterise the aquifer geometry of the Wairau Plain, Marlborough District, New Zealand. The 3D geological model which consists of eight litho-stratigraphic units has been subsequently used to synthesise hydrogeological and hydrogeochemical data for different aquifers in an approach that aims to demonstrate how integration of water chemistry data within the physical framework of a 3D geological model can help to better understand and conceptualise groundwater systems in complex geological settings. Multivariate statistical techniques(e.g. Principal Component Analysis and Hierarchical Cluster Analysis) were applied to groundwater chemistry data to identify hydrochemical facies which are characteristic of distinct evolutionary pathways and a common hydrologic history of groundwaters. Principal Component Analysis on hydrochemical data demonstrated that natural water-rock interactions, redox potential and human agricultural impact are the key controls of groundwater quality in the Wairau Plain. Hierarchical Cluster Analysis revealed distinct hydrochemical water quality groups in the Wairau Plain groundwater system. Visualisation of the results of the multivariate statistical analyses and distribution of groundwater nitrate concentrations in the context of aquifer lithology highlighted the link between groundwater chemistry and the lithology of host aquifers. The methodology followed in this study can be applied in a variety of hydrogeological settings to synthesise geological, hydrogeological and hydrochemical data and present them in a format readily understood by a wide range of stakeholders. This enables a more efficient communication of the results of scientific studies to the wider community.