971 resultados para Beta-adrenergic agonist
Resumo:
The homogeneous electrocatalytic reduction of 1,2-diiodoethane by anions of the supramolecular complex of (beta-CD)(2)/C-60 in DMF solution is reported. The results show that the trianion of (beta-CD)(2)/C-60 exhibits electrocatalytic behavior towards the reduction of 1,2-diiodoethane, whereas the diani on is unable to reduce the diiodoethane. The second-order catalytic rate constant in DMF solution was determined to be 3.1 x 10(5) M-1 s(-1) by analysis of voltammetric responses under pseudo-first-order conditions with respect to (beta-CD)(2)/C-60. The results suggest that the host beta-cyclodextrin molecules have little effect on the electrocatalytic ability of the encapsulated C-60 toward organic halides.
Resumo:
Herein we report the spectroscopic, electrochemical, TEM and DLS characterizations Of C-60 supramolecular inclusion complexes with alpha-, beta- and gamma-cyclodextrins prepared using anionic C-60. The results indicate that the cyclodextrin itself has little effect on the encapsulated C-60 or on the properties of the inclusion complex. Instead, the cyclodextrin has a significant influence on the aggregation behavior of individual complex in aqueous solution, which in turn affects the property of the supramolecular complex of cyclodextrin and C-60 greatly, As the cavity dimension of cyclodextrin becomes smaller as it changes from gamma-CD to beta-CD, and finally to alpha-CD, it is observed that more aggregation occurs for the corresponding inclusion complex in aqueous solution.
Resumo:
The crystalline modifications alpha and beta of polypropylene (PP) were studied by using polarized light microscopy (PLM), wide-angle X-ray diffraction (WAXD), and differential scanning calorimetry (DSC). Typically beta crystals surrounded by alpha spherulites were observed at low temperature. With increasing temperature the beta crystals melted and a new crystal appeared. More interestingly, the melting temperature of the new crystal was about 5degrees higher than that of alpha spherulites originally present in the sample formed isothermally. It was assumed that this new crystal was the recrystalline alpha crystal. This assumption was supported by the DSC results. Furthermore, the crystallization kinetics of the PP used was studied on the basis of the traditional Avrami analysis. As a result, the Avrami exponents of crystallization temperature from 120 to 130degreesC ranged between 4.21 and 3.60, indicating that the crystallization mechanism of PP order melt was spherulitic growth and random nucleation.
Resumo:
Wide-angle X-ray diffraction (WAXD) was used to investigate the effects of shear on the crystallization behavior of polypropylene (PP) with beta-nucleating agent. The melt was subjected to shear at the shear rate from 0.5 to 60 s(-1) for 5 s with a CSS450 shear stage. For the PP with low content of the additive, the formation mechanism of the beta crystals is almost the same as that of pure isotactic polypropylene (iPP), viz., shear induces. Otherwise, for the samples with high content of the additive, the formation mechanism of the beta form are nucleating agent induces. The results clearly show that shear restrains the formation of high beta phase for the melt with additive.
Resumo:
The terbium complex supported by beta-diketiminate was synthesized and structurally characterized. Due to an efficient energy transfer from the ligand to the central Tb3+, this complex shows a strong emission corresponding to Tb3+5D4-F-7(J) (J = 6,5,4,3) transitions, with D-5(4)-F-7(5) (550 nm) green emission as the most prominent group. The decay behavior of Tb3+ luminescence depends strongly on the excitation wavelengths.
Resumo:
The crystallization and melting behavior of poly(beta-hydroxybutyrate-co-beta-hydroxyvalerate) (PHBV) and a 30/70 (w/w) PHBV/poly(propylene carbonate) (PPC) blend was investigated with differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR). The transesterification reaction between PHBV and PPC was detected in the melt-blending process. The interaction between the two macromolecules was confirmed by means of FTIR analysis. During the crystallization process from the melt, the crystallization temperature of the PHBV/PPC blend decreased about 8 degreesC, the melting temperature was depressed by 4 degreesC, and the degree of crystallinity of PHBV in the blend decreased about 9.4%; this was calculated through a comparison of the DSC heating traces for the blend and pure PHBV. These results indicated that imperfect crystals of formed, crystallization was inhibited, and the crystallization ability of PHBV was weakened in the blend. The equilibrium melting temperatures of PHBV and the 30/70 PHBV/PPC blend isothermally crystallized were 187.1 and 179 degreesC, respectively.
Resumo:
New titanium complexes with two nonsymmetric bidentate beta-enaminoketonato (N,O) ligands (4a-e), [(Ph)NC(R-2)C(H)C(R-1)O](2)TiCl2, have been synthesized. X-ray crystal structure reveals that complex 4a has a C-2-symmetric conformation with a distorted octahedral geometry around the titanium center. With modified methylaluminoxane (MMAO) as a cocatalyst, complexes 4a-e are active catalysts for ethylene polymerization at room temperature, producing high molecular weight polyethylenes bearing linear structures. The 4a,b/MMAO catalyst systems exhibit the characteristics of a quasi-living polymerization of ethylene, producing polyethylenes with narrow molecular weight distributions. Moreover, the 4a-d/MMAO catalyst systems are also capable of promoting the quasi-living copolymerization of ethylene with norbornene at room temperature, yielding high molecular weight alternating copolymers with narrow molecular weight distributions. The quasi-living nature of the catalysts allows the synthesis of new A-B polyethylene-block-poly(ethylene-conorbornene) diblock copolymer.
Resumo:
A series of nickel(II) complexes bearing two nonsymmetric bidentate beta-ketoiminato chelate ligands have been prepared, and the structures of complexes [(2,6-Me2C6H3)NC(CH3)C(H)C(Ph)O](2)Ni (4a) and [(2,6-Me2C6H3)NC(CH3)C(H)C(CF3)O](2)Ni (4c) have been confirmed by X-ray crystallographic analysis. These nickel(II) complexes were investigated as catalysts for the vinylic polymerization of norbornene. Using modified methylaluminoxane (MMAO) as a cocatalyst, these complexes display very high activities and produce high molecular weight polymers. Catalytic activity of up to 1.16 x 10(4) kg/mol(Ni) .h and the viscosity-average molecular 9 weight of polymer of up to 870 kg/mol were observed. Catalyst activity, polymer yield, and polymer molecular weight could be controlled over a wide range by the variation of the reaction parameters such as Al/Ni molar ratio, norbornene/catalyst molar ratio, monomer concentration, polymerization reaction temperature and time.
Resumo:
The multi-layered electroluminescent device consisting of Eu(TTA)(3)(2,2'-bipyridine mono N-oxide) (TTA = 2-thenoyltrifluoroacetonate) as the red dopant exhibited an impressive current and power efficiency at a brightness of 100 cd m(-2) and voltage-independent spectral stability.
Resumo:
A series of neutral nickel complexes [Ni(Ph)(PPh3)(N, O)] with Schiff-base ligands (N, O) [N, O = 5-Me-3-tert-Bu-(Ar-N=CH)C6H2O (1, Ar = 2,6-Me2C6H3; 2, Ar = 2,6-i-Pr2C6H3)], [Ni(Ph)(PPh3)(N,O)1, with beta-ketiminato ligands (N, O) [N, O = CH3COCHC=(CH3)N-Ar (3, Ar = 2,6-Me2C6H3; 4, Ar = 2,6-i-Pr2C6H3)] and [Ni(N, N)(PPh3)], and with beta-diketiminato ligands (N, N) [5, N, N = [2,6-i-Pr-2(C6H3)N=C(CH3)](2)CH] have been synthesized and characterized. The molecular structures of complexes 1, 4, and 5 have been confirmed by X-ray single-crystal analyses. Although their ligands have similar structures, complex 4 possesses a structure similar to that of four-coordination nickel with complex 1, while complex 5 reveals a rare three-coordination nickel geometry. These compounds show high catalytic activities of up to 3.16 x 10(7) g PNB mol(-1) Ni h(-1) for the addition polymerization of norbornene in the presence of modified methylaluminoxane (MMAO) as cocatalyst. Catalytic activities, polymer yield, molecular weights, and molecular weight distributions of polyborbornene have been investigated under various reaction conditions.
Resumo:
In this Letter, P-cyclodextrin (P-CD) was employed as stabilizer in the synthesis of gold nanoparticles. Gold nanoparticles were synthesized by the reduction of HAuCl4 by NaBH4 in the presence of P-CD. Varying the ratio of P-Cl) to HAuCl4, isolated gold nanoparticles could be assembled into nanowires. The nanoparticles and nanowires were characterized by transmission electron microscopy, UV/visible spectroscopy, infrared spectroscopy and X-ray photoelectron spectroscopy. The decreased relative intensity of skeletal and ring vibration in FT-IR spectra and the negative shift of the Au4f(7/2) binding energy in XPS spectra confirmed that beta-CD was chemisorped on An nanoparticles via hydroxyl group.
Resumo:
The synthesis and catalytic activity of lanthanide monoamido complexes supported by a beta-diketiminate ligand are described. Donor solvents, such as DME, can cleave the chloro bridges of the dinuclear beta-diketiminate ytterbium dichloride {[(DIPPh)(2)nacnac]YbCl(mu-Cl)(3)Yb[(DIPPh)(2)nacnac](THF)} (1) [(DIPPh)(2)nacnac = N,N-diisopropylphenyl-2,4-pentanediimine anion] to produce the monomeric complex [(DIPPh)(2)nacnac]YbCl2(DME) (2) in high isolated yield. Complex 2 is a useful precursor for the synthesis of beta-diketiminate-ytterbium monoamido derivatives. Reaction of complex 2 with 1 equiv of LiNPr2i in THF at room temperature, after crystallization in THF/toluene mixed solvent, gave the anionic beta-diketiminate-ytterbium amido complex [(DIPPh)(2)nacnac]Yb(NPr2i)(mu-Cl)(2)Li(THF)(2) (3), while similar reaction of complex 2 with LiNPh2 produced the neutral complex [(DIPPh)(2)nacnac]Yb(NPh2)Cl(THF) (4). Recrystallization of complex 3 from toluene solution at elevated temperature led to the neutral beta-diketiminate-lanthanide amido complex [{(DIPPh)(2)nacnac}Yb(NPr2i)(mu-Cl)](2) (5). The reaction medium has a significant effect on the outcome of the reaction.
Resumo:
Ethylene-propylene copolymerization, using [(Ph)NC(R-2)CHC(R-1)O](2)TiCl2 (R-1 = CF3, Ph, or t-Bu; R-2 = CH3 or CF3) titanium complexes activated with modified methylaluminoxane as a cocatalyst, was investigated. High-molecular-weight ethylene-propylene copolymers with relatively narrow molecular weight distributions and a broad range of chemical compositions were obtained. Substituents R-1 and R-2 influenced the copolymerization behavior, including the copolymerization activity, methylene sequence distribution, molecular weight, and polydispersity. With small steric hindrance at R-1 and R-2, one complex (R-1 = CF3; R-2 = CH3) displayed high catalytic activity and produced copolymers with high propylene incorporation but low molecular weight. The microstructures of the copolymers were analyzed with C-13 NMR to determine the methylene sequence distribution and number-average sequence lengths of uninterrupted methylene carbons.
Resumo:
A series of new titanium complexes bearing beta-diiminato ligands [(Ph)NC(R-1)CHC(R-2)N(Ph)](2)TiCl2 (4a: R-1 = R-2 = CH3; 4b: R-1 = R-2 = CF3; 4c: R-1 = Ph, R-2 = CH3; 4d: R-1 = Ph, R-2 = CF3) has been synthesized and characterized. X-ray crystal structures reveal that complexes 4a and 4c adopt distorted octahedral geometry around the titanium center. With modified methylaluminoxane (MMAO) as a cocatalyst, complexes 4a-d are active catalysts for ethylene polymerization, and produce high molecular weight polyethylenes. Catalyst activities and the molecular weights of polymers are considerably influenced by the steric and electronic effects of substituents on the catalyst backbone under the same polymerization condition. With the strong electron-withdrawing groups (CF3) at R-1 or/and R-2 position, complexes 4b and 4d show higher activities than complexes 4a and 4c, respectively.