895 resultados para Beta cell apoptosis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To determine the yields of cell lethality and micronucleus formation measured immediately after irradiation or at delayed times in primary human fibroblasts exposed to X-rays or alpha-particles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been suggested that increased intramedullary apoptosis may explain the paradox between peripheral blood cytopenias and the hyper- or normo-cellular bone marrow observed in the myelodysplastic syndromes (MDS). We wished to see if culture performance could be related to the presence of apoptotic cells in a group of patients with MDS (12 patients) and other patients with peripheral blood cytopenias (six patients) which caused diagnostic difficulty. There was no correlation between LTBMC or adherent cell growth and the presence of apoptotic cells in the original marrow sample. A variable degree of apoptosis was observed in both groups of patients. LTBMC profiles correlated well with diagnosis but were unrelated to the extent of intramedullary apoptosis. This suggests that apoptosis is a much more ubiquitous process in disease than previously thought. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

FLIP is a potential anti-cancer therapeutic target that inhibits apoptosis by blocking caspase 8 activation by death receptors. We report a novel interaction between FLIP and the DNA repair protein Ku70 that regulates FLIP protein stability by inhibiting its polyubiquitination. Furthermore, we found that the histone deacetylase (HDAC) inhibitor Vorinostat (SAHA) enhances the acetylation of Ku70, thereby disrupting the FLIP/Ku70 complex and triggering FLIP polyubiquitination and degradation by the proteasome. Using in vitro and in vivo colorectal cancer models, we further demonstrated that SAHA-induced apoptosis is dependant on FLIP downregulation and caspase 8 activation. In addition, an HDAC6-speci?c inhibitor Tubacin recapitulated the effects of SAHA, suggesting that HDAC6 is a key regulator of Ku70 acetylation and FLIP protein stability. Thus, HDAC inhibitors with anti-HDAC6 activity act as ef?cient post-transcriptional suppressors of FLIP expression and may, therefore, effectively act as ‘FLIP inhibitors’ © 2012 Macmillan Publishers Limited.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study was conducted to determine the perivascular cell responses to increased endothelial cell expression of insulin-like growth factor binding protein-3 (IGFBP-3) in mouse retina. The contribution of bone marrow cells in the IGFBP-3-mediated response was examined using green fluorescent protein-positive (GFP(+)) adult chimeric mice subjected to laser-induced retinal vessel occlusion injury. Intravitreal injection of an endothelial-specific IGFBP-3-expressing plasmid resulted in increased differentiation of GF(P)+ hematopoietic stem cells (HSCs) into pericytes and astrocytes as determined by immunohistochemical analysis. Administration of IGFBP-3 plasmid to mouse pups that underwent the oxygen-induced retinopathy model resulted in increased pericyte ensheathment and reduced pericyte apoptosis in the developing retina. Increased IGFBP-3 expression reduced the number of activated microglial cells and decreased apoptosis of neuronal cells in the oxygen-induced retinopathy model. In summary, IGFBP-3 increased differentiation of GFP(+) HSCs into pericytes and astrocytes while increasing vascular ensheathment of pericytes and decreasing apoptosis of pericytes and retinal neurons. All of these cytoprotective effects exhibited by IGFBP-3 overexpression can result in a more stable retinal vascular bed. Thus, endothelial expression of IGFBP-3 may represent a physiologic response to injury and may represent a therapeutic strategy for the treatment of ischemic vascular eye diseases, such as diabetic retinopathy and retinopathy of prematurity. (Am J Pathol 2011, 178:1517-1524; DOI: 10.1016/j.ajpath.2010.12.031)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Burkholderia cenocepacia infections in CF patients involve heightened inflammation, fatal sepsis, and high antibiotic resistance. Proinflammatory IL-1 beta secretion is important in airway inflammation and tissue damage. However, little is known about this pathway in macrophages upon B. cenocepacia infection. We report here that murine macrophages infected with B. cenocepacia K56-2 produce proinflammatory cytokine IL-1 beta in a TLR4 and caspase-1-mediated manner. We also determined that the OPS (O antigen) of B. cenocepacia LPS contributes to IL-1 beta production and pyroptotic cell death. Furthermore, we showed that the malfunction of the CFTR channel augmented IL-1 beta production upon B. cenocepacia infection of murine macrophages. Taken together, we identified eukaryotic and bacterial factors that contribute to inflammation during B. cenocepacia infection, which may aid in the design of novel approaches to control pulmonary inflammation. J. Leukoc. Biol. 89: 481-488; 2011.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2'-Beta-D-arabinouridine (AraU), the uridine analogue of the anticancer agent AraC, was synthesized and evaluated for antiviral activity and cytotoxicity. In addition, a series of AraU monophosphate prodrugs in the form of triester phosphoramidates (ProTides) were also synthesized and tested against a range of viruses, leukaemia and solid tumour cell lines. Unfortunately, neither the parent compound (AraU) nor any of its ProTides showed antiviral activity, nor potent inhibitory activity against any of the cancer cell lines. Therefore, the metabolism of AraU phosphoramidates to release AraU monophosphate was investigated. The results showed carboxypeptidase Y, hog liver esterase and crude CEM tumor cell extracts to hydrolyse the ester motif of phosphoramidates with subsequent loss of the aryl group, while molecular modelling studies suggested that the AraU l-alanine aminoacyl phosphate derivative might not be a good substrate for the phosphoramidase enzyme Hint-1. These findings are in agreement with the observed disappearance of intact prodrug and concomitant appearance of the corresponding phosphoramidate intermediate derivative in CEM cell extracts without measurable formation of araU monophosphate. These findings may explain the poor antiviral/cytostatic potential of the prodrugs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Inflammation and genetic instability are enabling characteristics of prostate carcinoma (PCa). Inactivation of the tumour suppressor gene phosphatase and tensin homolog (PTEN) is prevalent in early PCa. The relationship of PTEN deficiency to inflammatory signalling remains to be characterised.

Objective: To determine how loss of PTEN functionality modulates expression and efficacy of clinically relevant, proinflammatory chemokines in PCa.

Design, setting and participants: Experiments were performed in established cell-based PCa models, supported by pathologic analysis of chemokine expression in prostate tissue harvested from PTEN heterozygous (Pten(+/-)) mice harbouring inactivation of one PTEN allele.

Interventions: Small interfering RNA (siRNA)- or small hairpin RNA (shRNA)-directed strategies were used to repress PTEN expression and resultant interleukin-8 (CXCL8) signalling, determined under normal and hypoxic culture conditions.

Outcome measurements and statistical analysis: Changes in chemokine expression in PCa cells and tissue were analysed by real-time polymerase chain reaction (PCR), immunoblotting, enzyme-linked immunosorbent assay (ELISA), and immunohistochemistry; effects of chemokine signalling on cell function were assessed by cell cycle analysis, apoptosis, and survival assays.

Results and limitations: Transient (siRNA) or prolonged (shRNA) PTEN repression increased expression of CXCL8 and its receptors, chemokine (C-X-C motif) receptor (CXCR) 1 and CXCR2, in PCa cells. Hypoxia-induced increases in CXCL8, CXCR1, and CXCR2 expression were greater in magnitude and duration in PTEN-depleted cells. Autocrine CXCL8 signalling was more efficacious in PTEN-depleted cells, inducing hypoxia-inducible factor-1 (HIF-1) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-?B) transcription and regulating genes involved in survival and angiogenesis. Increased expression of the orthologous chemokine KC was observed in regions displaying atypical cytologic features in Pten(+/-) murine prostate tissue relative to normal epithelium in wild-type PTEN (Pten(WT)) glands. Attenuation of CXCL8 signalling decreased viability of PCa cells harbouring partial or complete PTEN loss through promotion of G1 cell cycle arrest and apoptosis. The current absence of clinical validation is a limitation of the study.

Conclusions: PTEN loss induces a selective upregulation of CXCL8 signalling that sustains the growth and survival of PTEN-deficient prostate epithelium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An increasing number of studies have implicated serine proteinases in the development of apoptosis. In this study, we assessed the ability of a set of highly specific irreversible inhibitors (activity probes), incorporating an a-amino alkane diphenyl phosphonate moiety, to modulate cell death. In an initial assessment of the cellular toxicity of these activity probes, we discovered that one example, N-a-tetramethylrhodamine phenylalanine diphenylphosphonate {TMR-PheP(OPh)2} caused a concentration-dependent decrease in the viability of HeLa and U251 mg cells. This reduced cell viability was associated with a time-dependent increase in caspase-3 activity, PARP cleavage and phosphatidylserine translocation, establishing apoptosis as the mechanism of cell death. SDS-PAGE analysis of cell lysates prepared from the HeLa cells treated with TMR-PheP(OPh)2, revealed the presence of a fluorescent band of molecular weight 58 kDa. Given that we have previously reported on the use of this type of activity probe to reveal active proteolytic species, we believe that we have identified a chymotrypsin-like serine proteinase activity integral to the maintenance of cell viability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Specific survival signals derived from extracellular matrix (ECM) and growth factors are required for mammary epithelial cell survival. We have previously demonstrated that inhibition of ECM-induced ERK1/2 MAPK pathway with PD98059 leads to apoptosis in primary mouse mammary epithelial cells. In this study, we have further investigated MAPK signal transduction in cell survival of these cells cultured on a laminin rich reconstituted basement membrane. ERK1/2 phosphorylation is activated in the absence of insulin by cell-cell substratum interactions that cause ligand-independent EGFR transactivation. Intact EGFR signal transduction is required for ECM determined cell survival as the EGFR pathway inhibitor, AG1478, induces apoptosis of these cultures. Rescue of AG1478 or PD98059 treated cultures by PTPase inhibition with vanadate restores cellular phospho-ERK1/2 levels and prevents apoptosis. These results emphasize that ERK1/2 phosphorylation and inhibition of PTPase activity are necessary for PMMEC cell survival.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Connective tissue growth factor [CTGF]/CCN2 is a prototypic member of the CCN family of regulatory proteins. CTGF expression is up-regulated in a number of fibrotic diseases, including diabetic nephropathy, where it is believed to act as a downstream mediator of TGF-beta function; however, the exact mechanisms whereby CTGF mediates its effects remain unclear. Here, we describe the role of CTGF in cell migration and actin disassembly in human mesangial cells, a primary target in the development of renal glomerulosclerosis. The addition of CTGF to primary mesangial cells induced cell migration and cytoskeletal rearrangement but had no effect on cell proliferation. Cytoskeletal rearrangement was associated with a loss of focal adhesions, involving tyrosine dephosphorylation of focal adhesion kinase and paxillin, increased activity of the protein tyrosine phosphatase SHP-2, with a concomitant decrease in RhoA and Rac1 activity. Conversely, Cdc42 activity was increased by CTGF. These functional responses were associated with the phosphorylation and translocation of protein kinase C-zeta to the leading edge of migrating cells. Inhibition of CTGF-induced protein kinase C-zeta activity with a myristolated PKC-zeta inhibitor prevented cell migration. Moreover, transient transfection of human mesangial cells with a PKC-zeta kinase inactive mutant (dominant negative) expression vector also led to a decrease in CTGF-induced migration compared with wild-type. Furthermore, CTGF stimulated phosphorylation and activation of GSK-3beta. These data highlight for the first time an integrated mechanism whereby CTGF regulates cell migration through facilitative actin cytoskeleton disassembly, which is mediated by dephosphorylation of focal adhesion kinase and paxillin, loss of RhoA activity, activation of Cdc42, and phosphorylation of PKC-zeta and GSK-3beta. These changes indicate that the initial stages of CTGF mediated mesangial cell migration are similar to those involved in the process of cell polarization. These findings begin to shed mechanistic light on the renal diabetic milieu, where increased CTGF expression in the glomerulus contributes to cellular dysfunction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mammary epithelial cells in primary cell culture require both growth factors and specific extracellular matrix (ECM)-attachment for survival. Here we demonstrate for the first time that inhibition of the ECM-induced Erk 1/Erk 2 (p42/44 MAPK) pathway, by PD 98059, leads to apoptosis in these cells. Associated with this cell death is a possible compensatory signalling through the p38 MAP kinase pathway the inhibition of which, by SB 203580, leads to a more rapid onset of apoptosis. This provides evidence for a hitherto undescribed Erk 1/Erk 2 to p38 MAP kinase pathway 'cross-talk' that is essential for the survival of these cells. The cell death associated with inhibition of these two MAP kinase pathways however, occurred in the presence of insulin that activates the classical PI-3 kinase-dependent Akt/PKB survival signals and Akt phosphorylation. Cell death induced by inhibition of the MAP kinase pathways did not affect Akt phosphorylation and may, thus, be independent of PI-3 kinase signalling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Investigation of the triclabendazole (TCBZ) resistance status of populations of Fasciola hepatica in field cases of fasciolosis, where treatment failure has been reported, can be supported by histological examination of flukes collected from recently treated hosts. In TCBZ-sensitive flukes (TCBZ-S) exposed to TCBZ metabolites for 1-4. days in vivo, but not in TCBZ-resistant flukes (TCBZ-R), morphological changes suggestive of apoptosis occur in cells undergoing meiosis or mitosis in the testis, ovary and vitelline follicles. In order to verify or refute the contention that efficacy of TCBZ treatment is associated with apoptosis in the reproductive organs of flukes, histological sections of TCBZ-S (Cullompton isolate) flukes and TCBZ-R (Sligo isolate) flukes were subjected to the TdT-mediated dUDP nick end labelling (TUNEL) in situ hybridisation method, a commercially available test specifically designed to label endonuclease-induced DNA strand breaks associated with apoptosis. Additionally, sections of in vivo-treated and untreated flukes originating from field outbreaks of suspected TCBZ-S and TCBZ-R fasciolosis were labelled by the TUNEL method. It was found that in treated TCBZ-S flukes, strong positive labelling indicating apoptosis was associated with morphologically abnormal cells undergoing mitosis or meiosis in the testis, ovary and vitelline follicles. Background labelling in the positive testis sections was attributed to heterophagy of cell debris by the sustentacular tissue. The triggering of apoptosis was probably related to failure of spindle formation at cell division, supporting the contention that TCBZ inhibits microtubule formation. In treated TCBZ-R (Sligo Type 1) flukes, and in treated flukes from field outbreaks of suspected TCBZ-R fasciolosis, no significant labelling was observed, while sections of fluke derived from a field case of fasciolosis where TCBZ resistance was not suspected were heavily labelled. Light labelling was associated with the testis of untreated Cullompton (TCBZ-S) and Sligo Type 2 (TCBZ-R) flukes, which exhibit abnormal spermatogenesis and spermiogenesis, respectively. This was attributed to apoptosis and to heterophagy of effete germ line cells by the sustentacular tissue. It is concluded that demonstration of apoptosis by in situ hybridisation using the TUNEL method on sections of 1-4. days in vivo TCBZ-treated F. hepatica can contribute to the diagnosis of TCBZ resistance in field outbreaks of fasciolosis. © 2012 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aflatoxin B1 (AFB1), a mycotoxin produced by Aspergillus flavus or A. parasiticus, is a frequent contaminant of food and feed. This toxin is hepatotoxic and immunotoxic. The present study analyzed in pigs the influence of AFB1 on humoral and cellular responses, and investigated whether the immunomodulation observed is produced through interference with cytokine expression. For 28 days, pigs were fed a control diet or a diet contaminated with 385, 867 or 1807 mu g pure AFB1/kg feed. At days 4 and 15, pigs were vaccinated with ovalbumin. AFB1 exposure, confirmed by an observed dose-response in blood aflatoxin-albumin adduct, had no major effect on humoral immunity as measured by plasma concentrations of total IgA, IgG and IgM and of anti-ovalbumin IgG. Toxin exposure did not impair the mitogenic response of lymphocytes but delayed and decreased their specific proliferation in response to the vaccine antigen, suggesting impaired lymphocyte activation in pigs exposed to AFB1. The expression level of pro-inflammatory (TNF-alpha, IL-1 beta, IL-6, IFN-gamma) and regulatory (IL-10) cytokines was assessed by real-time PCR in spleen. A significant up-regulation of all 5 cytokines was observed in spleen from pigs exposed to the highest dose of AFB1. In pigs exposed to the medium dose, IL-6 expression was increased and a trend towards increased IFN-gamma and IL-10 was observed. In addition we demonstrate that IL-6 impaired in vitro the antigenic- but not the mitogenic-induced proliferation of lymphocytes from control pigs vaccinated with ovalbumin. These results indicate that AFB1 dietary exposure decreases cell-mediated immunity while inducing an inflammatory response. These impairments in the immune response could participate in failure of vaccination protocols and increased susceptibility to infections described in pigs exposed to AFB1. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Histone deacetylases (HDACs) have a central role in the regulation of gene expression. Here we investigated whether HDAC7 has an impact on embryonic stem (ES) cell differentiation into smooth muscle cells (SMCs). ES cells were seeded on collagen-IV-coated flasks and cultured in the absence of leukemia inhibitory factor in differentiation medium to induce SMC differentiation. Western blots and double-immunofluorescence staining demonstrated that HDAC7 has a parallel expression pattern with SMC marker genes. In ex vivo culture of embryonic cells from SM22-LacZ transgenic mice, overexpression of HDAC7 significantly increased beta-galactosidase-positive cell numbers and enzyme activity, indicating its crucial role in SMC differentiation during embryonic development. We found that HDAC7 undergoes alternative splicing during ES cell differentiation. Platelet-derived growth factor enhanced ES cell differentiation into SMCs through upregulation of HDAC7 splicing. Further experiments revealed that HDAC7 splicing induced SMC differentiation through modulation of the SRF-myocardin complex. These findings suggest that HDAC7 splicing is important for SMC differentiation and vessel formation in embryonic development.