999 resultados para Backbone-cyclized Proteins Database
Resumo:
Shellfish are a source of food allergens, and their consumption is the cause of severe allergic reactions in humans. Tropomyosins, a family of muscle proteins, have been identified as the major allergens in shellfish and mollusks species. Nevertheless, few experimentally determined three-dimensional structures are available in the Protein Data Base (PDB). In this study, 3D models of several homologous of tropomyosins present in marine shellfish and mollusk species (Chaf 1, Met e1, Hom a1, Per v1, and Pen a1) were constructed, validated, and their immunoglobulin E binding epitopes were identified using bioinformatics tools. All protein models for these allergens consisted of long alpha-helices. Chaf 1, Met e1, and Hom a1 had six conserved regions with sequence similarities to known epitopes, whereas Per v1 and Pen a1 contained only one. Lipophilic potentials of identified epitopes revealed a high propensity of hydrophobic amino acids in the immunoglobulin E binding site. This information could be useful to design tropomyosin-specific immunotherapy for sea food allergies.
Resumo:
Baru (Dipteryx alata Vog.) is an abundant legume in the Brazilian Savanna. Its nuts can be exploited sustainably using its protein and lipid fractions. This study aimed to analyze the proteins of the nuts present in the defatted flour and protein concentrate in terms of their functional properties, the profile of their fractions, and the in vitro digestibility. The flour was defatted with hexane and extracted at the pH of higher protein solubility to obtain the protein concentrate. The electrophoretic profile of the protein fractions was evaluated in SDS-PAGE gel. The functional properties of the proteins indicate the possibility of their use in various foods, like soybeans providing water absorption capacity, oil absorption capacity, emulsifying properties, and foamability. Globulins, followed by the albumins, are the major fractions of the flour and protein concentrate, respectively. Digestibility was greater for the concentrate than for the defatted flour.
Resumo:
Bacuri (Scheelea phalerata Mart.) is a type of palm fruit tree widely distributed in the Brazilian Cerrado. The objective of this paper was to study the almonds of bacuri, in their form in natura and processed, focusing on their nutritional value through the profile of amino acids, anti-nutritional factors and in vivo digestibility. Raw and toasted samples of the almond presented a high level of proteins and fiber. Proteins of raw bacuri almond showed no limiting amino acid when compared to the ones recommended by FAO/WHO, and histidine was the most limiting essential amino acid in the toasted almonds. The almond of bacuri does not present anti- nutritional factors. In an assay with rats fed with control (casein), tests (bacuri almond flours) and aproteic diets, we verified the quantity of ration ingested and body weight gain, determining the urinary and metabolic nitrogen. Rats treated with the test diets presented inferior values of True Digestibility (DV), (82.9 and 72.3%, respectively for the raw and toasted almonds) when compared to the control group (92.3%). The raw bacuri almond presented a superior nutritional value to the one found in the toasted almond.
Resumo:
Phaseolus lunatus protein concentrates and the proteases Alcalase(R) and Pepsin-Pancreatin were used for the production of protein hydrolysates that inhibit angiotensin-I converting enzyme (ACE). Protein concentrate obtained from germinated and ungerminated seeds flour was hydrolyzed with Alcalase(R) at enzyme/substrate ratio (E/S) 1/10 and during 0.5 and 2.0 h, respectively. On the other hand, protein concentrate obtained from ungerminated (E/S: 1/10) and germinated (E/S: 1/50) seeds flour was sequentially hydrolyzed with Pepsin-Pancreatin during 1.0 and 3.0 h, respectively. Peptide fractions with ACE inhibitory activity in a range of 0.9 to 3.8 µg/mL were obtained by G-50 gel filtration chromatography and high- performance liquid chromatography C18 reverse phase chromatography. The observed amino acid composition suggests a substantial contribution of hydrophobic residues to the peptides’ inhibitory potency, which potentially acts via blocking of angiotensin II production. These results show that P. lunatus seed proteins are a potential source of ACE inhibitory peptides when hydrolyzed with Alcalase(R) and Pepsin-Pancreatin.
Resumo:
With the growth in new technologies, using online tools have become an everyday lifestyle. It has a greater impact on researchers as the data obtained from various experiments needs to be analyzed and knowledge of programming has become mandatory even for pure biologists. Hence, VTT came up with a new tool, R Executables (REX) which is a web application designed to provide a graphical interface for biological data functions like Image analysis, Gene expression data analysis, plotting, disease and control studies etc., which employs R functions to provide results. REX provides a user interactive application for the biologists to directly enter the values and run the required analysis with a single click. The program processes the given data in the background and prints results rapidly. Due to growth of data and load on server, the interface has gained problems concerning time consumption, poor GUI, data storage issues, security, minimal user interactive experience and crashes with large amount of data. This thesis handles the methods by which these problems were resolved and made REX a better application for the future. The old REX was developed using Python Django and now, a new programming language, Vaadin has been implemented. Vaadin is a Java framework for developing web applications and the programming language is extremely similar to Java with new rich components. Vaadin provides better security, better speed, good and interactive interface. In this thesis, subset functionalities of REX was selected which includes IST bulk plotting and image segmentation and implemented those using Vaadin. A code of 662 lines was programmed by me which included Vaadin as the front-end handler while R language was used for back-end data retrieval, computing and plotting. The application is optimized to allow further functionalities to be migrated with ease from old REX. Future development is focused on including Hight throughput screening functions along with gene expression database handling
Resumo:
Music archives and composition manuscripts from the Viola database.
Resumo:
The microenvironment within the tumor plays a central role in cellular signaling. Rapidly proliferating cancer cells need building blocks for structures as well as nutrients and oxygen for energy production. In normal tissue, the vasculature effectively transports oxygen, nutrient and waste products, and maintains physiological pH. Within a tumor however, the vasculature is rarely sufficient for the needs of tumor cells. This causes the tumor to suffer from lack of oxygen (hypoxia) and nutrients as well as acidification, as the glycolytic end product lactate is accumulated. Cancer cells harbor mutations enabling survival in the rough microenvironment. One of the best characterized mutations is the inactivation of the von Hippel-Lindau protein (pVHL) in clear cell renal cell carcinoma (ccRCC). Inactivation causes constitutive activation of hypoxia-inducible factor HIF which is an important survival factor regulating glycolysis, neovascularization and apoptosis. HIFs are normally regulated by HIF prolyl hydroxylases (PHDs), which in the presence of oxygen target HIF α-subunit to ubiquitination by pVHL and degradation by proteasomes. In my thesis work, I studied the role of PHDs in the survival of carcinoma cells in hypoxia. My work revealed an essential role of PHD1 and PHD3 in cell cycle regulation through two cyclin-dependent kinase inhibitors (CKIs) p21 and p27. Depletion of PHD1 or PHD3 caused a cell cycle arrest and subjected the carcinoma cells to stress and impaired the survival.
Resumo:
One of the various functions of proteins in biological systems is the transport of small molecules, for this purpose proteins have naturally evolved special mechanisms to allow both ligand binding and its subsequent release to a target site; a process fundamental to many biological processes. Transport of Vitamin E (a-tocopherol), a lipid soluble antioxidant, to membranes helps in the protection of polyunsaturated fatty acids against peroxidative damage. In this research, the ligand binding characteristics of several members of the CRALTRIO family of lipid binding proteins was examined; the recombinant human a-Tocopherol Transfer Protein (a-TIP), Supernatant Protein Factor (SPF)ffocopherol Associated Protein (TAP), Cellular Retinaldehyde Binding Protein (CRALBP) and the phosphatidylinositol transfer protein from S. cerevisiae Sec 14p. Recombinant Sec 14p was expressed and purified from E. coli for comparison of tocopherol binding to the two other recombinant proteins postulated to traffic a-tocopherol. Competitive binding assays using [3H]-a-tocopherol and Lipidex-l000 resin allowed determination of the dissociation constants ~) of the CRAL-TRIO proteins for a-tocopherol and - 20 hydrophobic ligands for evaluation of the possible biological relevance of the binding interactions observed. The KIs (nM) for RRR-a-tocopherol are: a-TIP: 25.0, Sec 14p: 373, CRALBP: 528 and SPFffAP: 615. This indicates that all proteins recognize tocopherol but not with the same affinity. Sec 14p bound its native ligand PI with a KI of381 whereas SPFffAP bound PI (216) and y-tocopherol (268) similarly in contrast to the preferential binding ofRRR-a-tocopherol by a-TIP. Efforts to adequately represent biologically active SPFff AP involved investigation of tocopherol binding for several different recombinant proteins derived from different constructs and in the presence of different potential modulators (Ca+2, Mg+2, GTP and GDP); none of these conditions enhanced or inhibited a-tocopherol binding to SPF. This work suggests that only aTTP serves as the physiological mediator of a-tocopherol, yet structural homology between proteins allows common recognition of similar ligand features. In addition, several photo-affmity analogs of a-tocopherol were evaluated for their potential utility in further elucidation of a-TTP function or identification of novel tocopherol binding proteins.
Resumo:
In the work reported here, optically clear, ultrathin TEOS derived sol-gel slides which were suitable for studies of tryptophan (Trp) fluorescence from entrapped proteins were prepared by the sol-gel technique and characterized. The monitoring of intrinsic protein fluorescence provided information about the structure and environment of the entrapped protein, and about the kinetics of the interaction between the entrapped protein and extemal reagents. Initial studies concentrated on the single Trp protein monellin which was entrapped into the sol-gel matrices. Two types of sol-gel slides, termed "wet aged", in which the gels were aged in buffer and "dry-aged", in which the gels were aged in air , were studied in order to compare the effect of the sol-gel matrix on the structure of the protein at different aging stages. Fluorescence results suggested that the mobility of solvent inside the slides was substantially reduced. The interaction of the entrapped protein with both neutral and charged species was examined and indicated response times on the order of minutes. In the case of the neutral species the kinetics were diffusion limited in solution, but were best described by a sum of first order rate constants when the reactions occurred in the glass matrix. For charged species, interactions between the analytes and the negatively charged glass matrix caused the reaction kinetics to become complex, with the overall reaction rate depending on both the type of aging and the charge on the analyte. The stability and conformational flexibility of the entrapped monellin were also studied. These studies indicated that the encapsulation of monellin into dry-aged monoliths caused the thermal unfolding transition to broaden and shift upward by 14°C, and causedthe long-term stability to improve by 12-fold (compared to solution). Chemical stability studies also showed a broader transition for the unfolding of the protein in dry-aged monoliths, and suggested that the protein was present in a distribution of environments. Results indicated that the entrapped proteins had a smaller range of conformational motions compared to proteins in solution, and that entrapped proteins were not able to unfold completely. The restriction of conformational motion, along with the increased structural order of the internal environment of the gels, likely resulted in the improvements in themial and long-term stability that were observed. A second protein which was also studied in this work is the metal binding protein rat oncomodulin. Initially, the unfolding behavior of this protein in aqueous solution was examined. Several single tryptophan mutants of the metal-binding protein rat oncomodulin (OM) were examined; F102W, Y57W, Y65W and the engineered protein CDOM33 which had all 12 residues of the CD loop replaced with a higher affinity binding loop. Both the thermal and the chemical stability were improved upon binding of metal ions with the order apo < Ca^^ < Tb^"^. During thermal denaturation, the transition midpoints (Tun) of Y65W appeared to be the lowest, followed by Y57W and F102W. The placement of the Trp residue in the F-helix in F102W apparently made the protein slightly more thermostable, although the fluorescence response was readily affected by chemical denaturants, which probably acted through the disruption of hydrogen bonds at the Cterminal end of the F-helix. Under both thermal and chemical denaturation, the engineered protein showed the highest stability. This indicated that increasing the number of metal ligating oxygens in the binding site, either by using a metal ion with a higher coordinatenumber (i.e. Tb^*) which binds more carboxylate ligands, or by providing more ligating groups, as in the CDOM33 replacement, produces notable improvements in protein stability. Y57W and CE)OM33 OM were chosen for further studies when encapsulated into sol-gel derived matrices. The kinetics of interaction of terbium with the entrapped proteins, the ability of the entrapped protein to binding terbium, as well as thermal stability of these two entrapped protein were compared with different levels of Ca^"*^ present in the matrix and in solution. Results suggested that for both of the proteins, the response time and the ability to bind terbium could be adjusted by adding excess calcium to the matrix before gelation. However, the less stable protein Y57W only retained at most 45% of its binding ability in solution while the more stable protein CDOM33 was able to retain 100% binding ability. Themially induced denaturation also suggested that CDOM33 showed similar stability to the protein in solution while Y57W was destabilized. All these results suggested that "hard" proteins (i.e. very stable) can easily survive the sol-gel encapsulation process, but "soft" proteins with lower thermodynamic stability may not be able to withstand the sol-gel process. However, it is possible to control many parameters in order to successfully entrap biological molecules into the sol-gel matrices with maxunum retention of activity.
Resumo:
Solid state nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for studying structural and dynamical properties of disordered and partially ordered materials, such as glasses, polymers, liquid crystals, and biological materials. In particular, twodimensional( 2D) NMR methods such as ^^C-^^C correlation spectroscopy under the magicangle- spinning (MAS) conditions have been used to measure structural constraints on the secondary structure of proteins and polypeptides. Amyloid fibrils implicated in a broad class of diseases such as Alzheimer's are known to contain a particular repeating structural motif, called a /5-sheet. However, the details of such structures are poorly understood, primarily because the structural constraints extracted from the 2D NMR data in the form of the so-called Ramachandran (backbone torsion) angle distributions, g{^,'4)), are strongly model-dependent. Inverse theory methods are used to extract Ramachandran angle distributions from a set of 2D MAS and constant-time double-quantum-filtered dipolar recoupling (CTDQFD) data. This is a vastly underdetermined problem, and the stability of the inverse mapping is problematic. Tikhonov regularization is a well-known method of improving the stability of the inverse; in this work it is extended to use a new regularization functional based on the Laplacian rather than on the norm of the function itself. In this way, one makes use of the inherently two-dimensional nature of the underlying Ramachandran maps. In addition, a modification of the existing numerical procedure is performed, as appropriate for an underdetermined inverse problem. Stability of the algorithm with respect to the signal-to-noise (S/N) ratio is examined using a simulated data set. The results show excellent convergence to the true angle distribution function g{(j),ii) for the S/N ratio above 100.
Resumo:
The distribution of excitation energy between the two photosystems (PSII and PSI) of photosynthesis is regulated by the light state transition. Three models have been proposed for the mechanism of the state transition in phycobilisome (PBS) containing organisms, two involving protein phosphorylation. A procedure for the rapid isolation of thylakoid membranes and PBS fractions from the cyanobacterium Synechococcus m. PCC 6301 in light state 1 and light state 2 was developed. The phosphorylation of thylakoid and soluble proteins rapidly isolated from intact cells in state 1 and state 2 was investigated. 77 K fluorescence emission spectra revealed that rapidly isolated thylakoid membranes retained the excitation energy distribution characteristic of intact cells in state 1 and state 2. Phosphoproteins were identified by gel electrophoresis of both thylakoid membrane and phycobilisome fractions isolated from cells labelled with 32p orthophosphate. The results showed very close phosphoprotein patterns for either thylakoid membrane or PBS fractions in state 1 and state 2. These results do not support proposed models for the state transition which required phosphorylation of PBS or thylakoid membrane proteins.
Resumo:
The successful development of stable biosensors incorporating entrapped proteins suffers from poor understanding of the properties of the entrapped biomolecules. This thesis reports on the use of fluorescence spectroscopy to investigate the properties of proteins entrapped in sol-gel processed silicate materials. Two different single tryptophan (Trp) proteins were investigated in this thesis, the Ca2 + binding protein cod III parvalbumin (C3P) and the salicylate binding protein human serum albumin (HSA). Furthermore, the reactive single cysteine (Cys) residue within C3P and HSA were labelled with the probes iodoacetoxynitrobenzoxadiazole (C3P) and acrylodan (C3P and HSA) to further examine the structure, stability and function of the free and entrapped proteins. The results show that both C3P and HSA can be successfully entrapped into sol-gelderived matrices with retention of function and conformational flexibility.
Resumo:
Several stresses to tissues including hyperthermia, ischemia, mechanical trauma and heavy metals have been demonstrated to affect the regulation of a subset of the family of heat shock proteins of70kOa (hsp70). In several organisms following some of these traumas, the levels of hsp70 mRNA and proteins are dramatically upregulated. However, the effects of the stress on limb and tail amputation in the newt Notophthalmus viridescens, involving mechanical tissue damage, have not adequately been examined. In the present study, three techniques were utilized to quantitate the levels of hsp70 mRNA and protein in the tissues of the forelimbs and tails of newts during the early post-traumatic events following surgical resection of these:: appendages. These included quantitative Western blotting of proteins separated by both one and twodimensional SDS-polyacrylamide gel electrophoresis and quantitative Northern blot analysis of total RNA. In tissues of both the limb and tail one hour after amputation, there were no significant differences in the levels of hsp70 protein measured by one-dimensional SOSPAGE followed by Western blotting, when compared to the levels measured in the unamputated limb. A 30 minute heat shock at 35°C failed to elicit an increase in the levels of hsp70 protein in these tissues. Further analysis using the more sensitive 20 PAGE separation of stump tissue proteins revealed that at least some of the five hsp70 isoforms of the newt may be differentially regulated in limbs and tails in response to trauma. It appears also that amputation of the tail and limb tissues leads to slight 3 elevation in the levels of HSP70 mRNA when compared to those of their respective unstressed tissues.
Resumo:
Polyglutamine is a naturally occurring peptide found within several proteins in neuronal cells of the brain, and its aggregation has been implicated in several neurodegenerative diseases, including Huntington's disease. The resulting aggregates have been demonstrated to possess ~-sheet structure, and aggregation has been shown to start with a single misfolded peptide. The current project sought to computationally examine the structural tendencies of three mutant poly glutamine peptides that were studied experimentally, and found to aggregate with varying efficiencies. Low-energy structures were generated for each peptide by simulated annealing, and were analyzed quantitatively by various geometry- and energy-based methods. According to the results, the experimentally-observed inhibition of aggregation appears to be due to localized conformational restraint placed on the peptide backbone by inserted prolines, which in tum confines the peptide to native coil structure, discouraging transition towards the ~sheet structure required for aggregation. Such knowledge could prove quite useful to the design of future treatments for Huntington's and other related diseases.