914 resultados para Automobile driving in winter


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fig trees are pollinated by fig wasps, which also oviposit in female flowers. The wasp larvae gall and eat developing seeds. Although fig trees benefit from allowing wasps to oviposit, because the wasp offspring disperse pollen, figs must prevent wasps from ovipositing in all flowers, or seed production would cease, and the mutualism would go extinct. In Ficus racemosa, we find that syconia (‘figs’) that have few foundresses (ovipositing wasps) are underexploited in the summer (few seeds, few galls, many empty ovules) and are overexploited in the winter (few seeds, many galls, few empty ovules). Conversely, syconia with many foundresses produce intermediate numbers of galls and seeds, regardless of season. We use experiments to explain these patterns, and thus, to explain how this mutualism is maintained. In the hot summer, wasps suffer short lifespans and therefore fail to oviposit in many flowers. In contrast, cooler temperatures in the winter permit longer wasp lifespans, which in turn allows most flowers to be exploited by the wasps. However, even in winter, only in syconia that happen to have few foundresses are most flowers turned into galls. In syconia with higher numbers of foundresses, interference competition reduces foundress lifespans, which reduces the proportion of flowers that are galled. We further show that syconia encourage the entry of multiple foundresses by delaying ostiole closure. Taken together, these factors allow fig trees to reduce galling in the wasp-benign winter and boost galling (and pollination) in the wasp-stressing summer. Interference competition has been shown to reduce virulence in pathogenic bacteria. Our results show that interference also maintains cooperation in a classic, cooperative symbiosis, thus linking theories of virulence and mutualism. More generally, our results reveal how frequency-dependent population regulation can occur in the fig-wasp mutualism, and how a host species can ‘set the rules of the game’ to ensure mutualistic behavior in its symbionts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intensity and distribution of daily precipitation is predicted to change under scenarios of increased greenhouse gases (GHGs). In this paper, we analyse the ability of HadCM2, a general circulation model (GCM), and a high-resolution regional climate model (RCM), both developed at the Met Office's Hadley Centre, to simulate extreme daily precipitation by reference to observations. A detailed analysis of daily precipitation is made at two UK grid boxes, where probabilities of reaching daily thresholds in the GCM and RCM are compared with observations. We find that the RCM generally overpredicts probabilities of extreme daily precipitation but that, when the GCM and RCM simulated values are scaled to have the same mean as the observations, the RCM captures the upper-tail distribution more realistically. To compare regional changes in daily precipitation in the GHG-forced period 2080-2100 in the GCM and the RCM, we develop two methods. The first considers the fractional changes in probability of local daily precipitation reaching or exceeding a fixed 15 mm threshold in the anomaly climate compared with the control. The second method uses the upper one-percentile of the control at each point as the threshold. Agreement between the models is better in both seasons with the latter method, which we suggest may be more useful when considering larger scale spatial changes. On average, the probability of precipitation exceeding the 1% threshold increases by a factor of 2.5 (GCM and RCM) in winter and by I .7 (GCM) or 1.3 (RCM) in summer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The observed decline in summer sea ice extent since the 1970s is predicted to continue until the Arctic Ocean is seasonally ice free during the 21st Century. This will lead to a much perturbed Arctic climate with large changes in ocean surface energy flux. Svalbard, located on the present day sea ice edge, contains many low lying ice caps and glaciers and is expected to experience rapid warming over the 21st Century. The total sea level rise if all the land ice on Svalbard were to melt completely is 0.02 m. The purpose of this study is to quantify the impact of climate change on Svalbard’s surface mass balance (SMB) and to determine, in particular, what proportion of the projected changes in precipitation and SMB are a result of changes to the Arctic sea ice cover. To investigate this a regional climate model was forced with monthly mean climatologies of sea surface temperature (SST) and sea ice concentration for the periods 1961–1990 and 2061–2090 under two emission scenarios. In a novel forcing experiment, 20th Century SSTs and 21st Century sea ice were used to force one simulation to investigate the role of sea ice forcing. This experiment results in a 3.5 m water equivalent increase in Svalbard’s SMB compared to the present day. This is because over 50 % of the projected increase in winter precipitation over Svalbard under the A1B emissions scenario is due to an increase in lower atmosphere moisture content associated with evaporation from the ice free ocean. These results indicate that increases in precipitation due to sea ice decline may act to moderate mass loss from Svalbard’s glaciers due to future Arctic warming.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes recent variations of the North Atlantic eddy-driven jet stream and analyzes the mean response of the jet to anthropogenic forcing in climate models. Jet stream changes are analyzed both using a direct measure of the near-surface westerly wind maximum and using an EOF-based approach. This allows jet stream changes to be related to the widely used leading patterns of variability: the North Atlantic Oscillation (NAO) and East Atlantic (EA) pattern. Viewed in NAO–EA state space, isolines of jet latitude and speed resemble a distorted polar coordinate system, highlighting the dependence of the jet stream quantities on both spatial patterns. Some differences in the results of the two methods are discussed, but both approaches agree on the general characteristics of the climate models. While there is some agreement between models on a poleward shift of the jet stream in response to anthropogenic forcing, there is still considerable spread between different model projections, especially in winter. Furthermore, the model responses to forcing are often weaker than their biases when compared to a reanalysis. Diagnoses of jet stream changes can be sensitive to the methodologies used, and several aspects of this are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current state-of-the-art climate models fail to capture accurately the path of the Gulf Stream and North Atlantic Current. This leads to a warm bias near the North American coast, where the modelled Gulf Stream separates from the coast further north, and a cold anomaly to the east of the Grand Banks of Newfoundland, where the North Atlantic Current remains too zonal in this region. Using an atmosphere-only model forced with the sea surface temperature (SST) biases in the North Atlantic, we consider the impact they have on the mean state and the variability in the North Atlantic European region in winter. Our results show that the SST errors produce a mean sea-level pressure response that is similar in magnitude and pattern to the atmospheric circulation errors in the coupled climate model. The work also suggests that errors in the coupled model storm tracks and North Atlantic Oscillation, compared to reanalysis data, can also be explained partly by these SST errors. Our results suggest that both the error in the Gulf Stream separation location and the path of the North Atlantic Current around the Grand Banks play important roles in affecting the atmospheric circulation. Reducing these coupled model errors could improve significantly the representation of the large-scale atmospheric circulation of the North Atlantic and European region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The variation of stratospheric equatorial wave characteristics with the phase of the quasi-biennial oscillation (QBO) is investigated using ECMWF Re-Analysis and NOAA outgoing longwave radiation (OLR) data. The impact of the QBO phases on the upward propagation of equatorial waves is found to be consistent and significant. In the easterly phase, there is larger Kelvin wave amplitude but smaller westward-moving mixed Rossby–gravity (WMRG) and n = 1 Rossby (R1) wave amplitude due to reduced propagation from the upper troposphere into the lower stratosphere, compared with the westerly phase. Differences in the wave amplitude exist in a deeper layer in summer than in winter, consistent with the seasonality of ambient zonal winds. There is a strong evidence of Kelvin wave amplitude peaking just below the descending westerly phase, suggesting that Kelvin waves act to bring the westerly phase downward. However, the corresponding evidence for WMRG and R1 waves is less clear. In the lower stratosphere there is zonal variation in equatorial waves. This reflects the zonal asymmetry of wave amplitudes in the upper troposphere, the source for the lower-stratospheric waves. In easterly winters the upper-tropospheric WMRG and R1 waves over the eastern Pacific region appear to be somewhat stronger compared to climatology, perhaps because of the accumulation of waves that are unable to propagate upward into the lower stratosphere. Vertical propagation features of these waves are generally consistent with theory and suggest a mixture of Doppler shifting by ambient flows and filtering. Some lower-stratosphere equatorial waves have a connection with preceding tropical convection, especially for Kelvin and R1 waves in winter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In 1594, major decisions were made by the governors of London and the country about plays and playing. We need to learn what lay behind these events, such as what led James Burbage to build his Blackfriars theater in 1596. That initial fiasco might tell us much about what lay behind Shakespeare’s decision to join the new Chamberlain’s Men in 1594 and his subsequent commitment to them as a full-time playwright. When the Globe burned down in 1613, a majority of the shareholders decided to rebuild it at great cost, but Shakespeare withdrew. The rebuilding was old-fashioned thinking, reverting to the company’s desire, asserted in 1594, to play indoors in winter, which helps to clarify their decisions and Shakespeare’s own—to write plays rather than more long poems. The few surviving papers of the Privy Council and the London mayoralty from the time suggest that one of the two new companies of 1594 preferred to play indoors during the winter instead of at their allocated open playhouses in the suburbs. They tried to renew this traditional practice, first in 1594 and again in 1596 when James Burbage built the indoor Blackfriars playhouse for them. The renewal of the Globe in 1614 was part of the same thinking, although Shakespeare evidently opted out of the decision.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the role of the anthropogenic heat flux on the urban heat island of London. To do this, the time-varying anthropogenic heat flux is added to an urban surface-energy balance parametrization, the Met Office–Reading Urban Surface Exchange Scheme (MORUSES), implemented in a 1 km resolution version of the UK Met Office Unified Model. The anthropogenic heat flux is derived from energy-demand data for London and is specified on the model's 1 km grid; it includes variations on diurnal and seasonal time-scales. We contrast a spring case with a winter case, to illustrate the effects of the larger anthropogenic heat flux in winter and the different roles played by thermodynamics in the different seasons. The surface-energy balance channels the anthropogenic heat into heating the urban surface, which warms slowly because of the large heat capacity of the urban surface. About one third of this additional warming goes into increasing the outgoing long-wave radiation and only about two thirds goes into increasing the sensible heat flux that warms the atmosphere. The anthropogenic heat flux has a larger effect on screen-level temperatures in the winter case, partly because the anthropogenic flux is larger then and partly because the boundary layer is shallower in winter. For the specific winter case studied here, the anthropogenic heat flux maintains a well-mixed boundary layer through the whole night over London, whereas the surrounding rural boundary layer becomes strongly stably stratified. This finding is likely to have important implications for air quality in winter. On the whole, inclusion of the anthropogenic heat flux improves the comparison between model simulations and measurements of screen-level temperature slightly and indicates that the anthropogenic heat flux is beginning to be an important factor in the London urban heat island.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper aims to understand the physical processes causing the large spread in the storm track projections of the CMIP5 climate models. In particular, the relationship between the climate change responses of the storm tracks, as measured by the 2–6 day mean sea level pressure variance, and the equator-to-pole temperature differences at upper- and lower-tropospheric levels is investigated. In the southern hemisphere the responses of the upper- and lower-tropospheric temperature differences are correlated across the models and as a result they share similar associations with the storm track responses. There are large regions in which the storm track responses are correlated with the temperature difference responses, and a simple linear regression model based on the temperature differences at either level captures the spatial pattern of the mean storm track response as well explaining between 30 and 60 % of the inter-model variance of the storm track responses. In the northern hemisphere the responses of the two temperature differences are not significantly correlated and their associations with the storm track responses are more complicated. In summer, the responses of the lower-tropospheric temperature differences dominate the inter-model spread of the storm track responses. In winter, the responses of the upper- and lower-temperature differences both play a role. The results suggest that there is potential to reduce the spread in storm track responses by constraining the relative magnitudes of the warming in the tropical and polar regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The summertime variability of the extratropical storm track over the Atlantic sector and its links to European climate have been analysed for the period 1948–2011 using observations and reanalyses. The main results are as follows. (1) The dominant mode of the summer storm track density variability is characterized by a meridional shift of the storm track between two distinct paths and is related to a bimodal distribution in the climatology for this region. It is also closely related to the Summer North Atlantic Oscillation (SNAO). (2) A southward shift is associated with a downstream extension of the storm track and a decrease in blocking frequency over the UK and northwestern Europe. (3) The southward shift is associated with enhanced precipitation over the UK and northwestern Europe and decreased precipitation over southern Europe (contrary to the behaviour in winter). (4) There are strong ocean–atmosphere interactions related to the dominant mode of storm track variability. The atmosphere forces the ocean through anomalous surface fluxes and Ekman currents, but there is also some evidence consistent with an ocean influence on the atmosphere, and that coupled ocean–atmosphere feedbacks might play a role. The ocean influence on the atmosphere may be particularly important on decadal timescales, related to the Atlantic Multidecadal Oscillation (AMO).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impact of El Nino–Southern Oscillation (ENSO) on atmospheric Kelvin waves and associated tropical convection is investigated using the ECMWF Re-Analysis, NOAA outgoing longwave radiation (OLR), and the analysis technique introduced in a previous study. It is found that the phase of ENSO has a substantial impact on Kelvin waves and associated convection over the equatorial central-eastern Pacific. El Nino (La Nina) events enhance (suppress) variability of the upper-tropospheric Kelvin wave and the associated convection there, both in extended boreal winter and summer. The mechanism of the impact is through changes in the ENSO-related thermal conditions and the ambient flow. In El Nino years, because of SST increase in the equatorial central-eastern Pacific, variability of eastward-moving convection, which is mainly associated with Kelvin waves, intensifies in the region. In addition, owing to the weakening of the equatorial eastern Pacific westerly duct in the upper troposphere in El Nino years, Kelvin waves amplify there. In La Nina years, the opposite occurs. However, the stronger westerly duct in La Nina winters allows more NH extratropical Rossby wave activity to propagate equatorward and force Kelvin waves around 200 hPa, partially offsetting the in situ weakening effect of the stronger westerlies on the waves. In general, in El Nino years Kelvin waves are more convectively and vertically coupled and propagate more upward into the lower stratosphere over the central-eastern Pacific. The ENSO impact in other regions is not clear, although in winter over the eastern Indian and western Pacific Oceans Kelvin waves and their associated convection are slightly weaker in El Nino than in La Nina years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diagnosing the climate of New Zealand from low-resolution General Circulation Models (GCMs) is notoriously difficult due to the interaction of the complex topography and the Southern Hemisphere (SH) mid-latitude westerly winds. Therefore, methods of downscaling synoptic scale model data for New Zealand are useful to help understand past climate. New Zealand also has a wealth of palaeoclimate-proxy data to which the downscaled model output can be compared, and to provide a qualitative method of assessing the capability of GCMs to represent, in this case, the climate 6000 yr ago in the Mid-Holocene. In this paper, a synoptic weather and climate regime classification system using Empirical Orthogonal Function (EOF) analysis of GCM and reanalysis data was used. The climate regimes are associated with surface air temperature and precipitation anomalies over New Zealand. From the analysis in this study, we find at 6000 BP that increased trough activity in summer and autumn led to increased precipitation, with an increased north-south pressure gradient ("zonal events") in winter and spring leading to drier conditions. Opposing effects of increased (decreased) temperature are also seen in spring (autumn) in the South Island, which are associated with the increased zonal (trough) events; however, the circulation induced changes in temperature are likely to have been of secondary importance to the insolation induced changes. Evidence from the palaeoclimate-proxy data suggests that the Mid-Holocene was characterized by increased westerly wind events in New Zealand, which agrees with the preference for trough and zonal regimes in the models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A steady decline in Arctic sea ice has been observed over recent decades. General circulation models predict further decreases under increasing greenhouse gas scenarios. Sea ice plays an important role in the climate system in that it influences ocean-to-atmosphere fluxes, surface albedo, and ocean buoyancy. The aim of this study is to isolate the climate impacts of a declining Arctic sea ice cover during the current century. The Hadley Centre Atmospheric Model (HadAM3) is forced with observed sea ice from 1980 to 2000 (obtained from satellite passive microwave radiometer data derived with the Bootstrap algorithm) and predicted sea ice reductions until 2100 under one moderate scenario and one severe scenario of ice decline, with a climatological SST field and increasing SSTs. Significant warming of the Arctic occurs during the twenty-first century (mean increase of between 1.6° and 3.9°C), with positive anomalies of up to 22°C locally. The majority of this is over ocean and limited to high latitudes, in contrast to recent observations of Northern Hemisphere warming. When a climatological SST field is used, statistically significant impacts on climate are only seen in winter, despite prescribing sea ice reductions in all months. When correspondingly increasing SSTs are incorporated, changes in climate are seen in both winter and summer, although the impacts in summer are much smaller. Alterations in atmospheric circulation and precipitation patterns are more widespread than temperature, extending down to midlatitude storm tracks. Results suggest that areas of Arctic land ice may even undergo net accumulation due to increased precipitation that results from loss of sea ice. Intensification of storm tracks implies that parts of Europe may experience higher precipitation rates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability of the climate models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5) to simulate North Atlantic extratropical cyclones in winter [December–February (DJF)] and summer [June–August (JJA)] is investigated in detail. Cyclones are identified as maxima in T42 vorticity at 850 hPa and their propagation is tracked using an objective feature-tracking algorithm. By comparing the historical CMIP5 simulations (1976–2005) and the ECMWF Interim Re-Analysis (ERA-Interim; 1979–2008), the authors find that systematic biases affect the number and intensity of North Atlantic cyclones in CMIP5 models. In DJF, the North Atlantic storm track tends to be either too zonal or displaced southward, thus leading to too few and weak cyclones over the Norwegian Sea and too many cyclones in central Europe. In JJA, the position of the North Atlantic storm track is generally well captured but some CMIP5 models underestimate the total number of cyclones. The dynamical intensity of cyclones, as measured by either T42 vorticity at 850 hPa or mean sea level pressure, is too weak in both DJF and JJA. The intensity bias has a hemispheric character, and it cannot be simply attributed to the representation of the North Atlantic large- scale atmospheric state. Despite these biases, the representation of Northern Hemisphere (NH) storm tracks has improved since CMIP3 and some CMIP5 models are able of representing well both the number and the intensity of North Atlantic cyclones. In particular, some of the higher-atmospheric-resolution models tend to have a better representation of the tilt of the North Atlantic storm track and of the intensity of cyclones in DJF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been proposed that growing crop varieties with higher canopy albedo would lower summer-time temperatures over North America and Eurasia and provide a partial mitigation of global warming ('bio-geoengineering') (Ridgwell et al 2009 Curr. Biol. 19 1–5). Here, we use a coupled ocean–atmosphere–vegetation model (HadCM3) with prescribed agricultural regions, to investigate to what extent the regional effectiveness of crop albedo bio-geoengineering might be influenced by a progressively warming climate as well as assessing the impacts on regional hydrological cycling and primary productivity. Consistent with previous analysis, we find that the averted warming due to increasing crop canopy albedo by 0.04 is regionally and seasonally specific, with the largest cooling of ~1 °C for Europe in summer whereas in the low latitude monsoonal SE Asian regions of high density cropland, the greatest cooling is experienced in winter. In this study we identify potentially important positive impacts of increasing crop canopy albedo on soil moisture and primary productivity in European cropland regions, due to seasonal increases in precipitation. We also find that the background climate state has an important influence on the predicted regional effectiveness of bio-geoengineering on societally-relevant timescales (ca 100 years). The degree of natural climate variability and its dependence on greenhouse forcing that are evident in our simulations highlights the difficulties faced in the detection and verification of climate mitigation in geoengineering schemes. However, despite the small global impact, regionally focused schemes such as crop albedo bio-geoengineering have detection advantages.