981 resultados para Auriferous mineralization


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Core recovered from Hess Rise contains concentrations of pyrite, marcasite, and barite in the lowermost meter of limestone (Unit II) and in the brecciated upper part of the underlying volcanic basement (Unit HI). Petrographic and chemical data indicate that the sulfide-barite assemblage in the limestone is mainly a product of low-temperature diagenetic processes. The iron-sulfide phases are biogenic and their concentrations mark the diffusion of sea water sulfate through sedimentary horizons containing abundant organic matter and mafic, glassy volcanogenic detritus. There is some evidence, however, that elevated temperatures augmented or intensified the synsedimentary diagenetic process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The monograph has been written on the base of data obtained from samples and materials collected during the 19-th cruise of RV ''Akademik Vernadsky'' to the Northern and Equatorial Indian Ocean. Geological features of the region (stratigraphy, tectonic structure, lithology, distribution of ore-forming components in bottom sediments, petrography of igneous rocks, etc.) are under consideration. Regularities of trace element concentration in Fe-Mn nodules, nodule distribution in bottom sediments, and engineering-geological properties of sediments within the nodule fields have been studied. Much attention is paid to ocean crust rocks. The wide range of ore mineralization (magnetite, chromite, chalcopyrite, pyrite, pentlandite, and other minerals) has been ascertained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pioneer information about chemical composition of river waters in the Wrangel Island has been obtained. It is shown that water composition reflects the lithogeochemical specifics of primary rocks and ore mineralization. In contrast to many areas of the Russian Far North river waters of the island are characterized by elevated background value of total mineralization (i.e., total dissolved solids, TDS) (0.3-2 g/l) and specific chemical type (SO4-Ca-Mg). This is related to abundance of Late Carboniferous gypsiferous and dolomitic sequences in the mountainous area of the island. It has also been established that salt composition of some streams is appreciably governed by supergene alterations of sulfide mineralization associated with quartz-carbonate vein systems. They make up natural centers of surface water contamination. Waters in such streams are characterized by low pH values (2.4-5.5), high TDS (up to 6-23 g/l) and SO4-Mg composition. These waters are also marked by anomalously high concentrations of heavy and non-ferrous metals, as well as REE, U, and Th.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Primary sulfide mineralization in basalts of the Costa Rica Rift occurs mainly in chrome-spinel-bearing olivine tholeiites. Primary sulfides form both globules, consisting of quenched single-phase solid solutions, and irregular polymineralic segregations of pyrrhotite, chalcopyrite, cubanite, and pentlandite. Two types of sulfide solid solutions - iron-nickel (Mss) and iron-copper (Iss) - were found among sulfide globules. These types appear to have formed because of sulfide-sulfide liquid immiscibility in the host magmas; as proved by the presence of globules with a distinct phase boundary between Mss and Iss. Such two-phase globules are associated with large olivine phenocrysts. Inhomogeneties among the globule composition likewise are caused by sulfide-sulfide immiscibility. Secondary sulfides form irregular segregations and veins consisting of pyrite, marcasite, and chalcopyrite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Manganese contents in reduced sediments and accumulation rates were investigated. Their values in sediments of most of cores are background (0.03-0.07 %).Anomalous concentrations (up to 2.5 %) and accumulation rates (up to 60 mg/cm**2/ka) occur near the known region of hydrothermal barite mineralization in the Derugin Basin. High accumulation rates of Mn (>10 mg/cm**2/ka) also occur in Holocene sediments to south-east from the Derugin Basin. It can be assumed that high Mn contents and accumulation rates occur there due to transportation of Mn-rich water from the Derugin Basin in the near-bottom layer under the lower border of the Sea of Okhotsk Intermediate Water. Intensive Mn accumulation is also typical for the South Okhotsk Basin near the Bussol Strait. Mn accumulation rates of glacial sediments of the second oxygen isotope stage are less significant, which is presumed to be caused by paleoceanological reasons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stockwork-like metal sulfide mineralizations were found at 910-928 m below seafloor (BSF) in the pillow/dike transition zone of Hole 504B. This is the same interval where most physical properties of the 5.9-m.y.-old crust of the Costa Rica Rift change from those characteristic of Layer 2B to those of Layer 2C. The pillow lavas, breccias, and veins of the stockwork-like zone were studied by transmitted and reflected light microscopy, X-ray diffraction, and electron microprobe analysis. Bulk rock oxygen isotopic analyses as well as isolated mineral oxygen and sulfur isotopic analyses and fluid inclusion measurements were carried out. A complex alteration history was reconstructed that includes three generations of fissures, each followed by precipitation of characteristic hydrothermal mineral parageneses: (1) Minor and local deposition of quartz occurred on fissure walls; adjacent wall rocks were silicified, followed by formation of chlorite and minor pyrite I in the veins, whereas albite, sphene, chlorite and chlorite-expandable clay mixtures, actinolite, and pyrite replaced igneous phases in the host rocks. The hydrothermal fluids responsible for this first stage were probably partially reacted seawater, and their temperatures were at least 200-250° C. (2) Fissures filled during the first stage were reopened and new cracks formed. They were filled with quartz, minor chlorite and chlorite-expandable clay mixtures, traces of epidote, common pyrite, sphalerite, chalcopyrite, and minor galena. During the second stage, hydrothermal fluids were relatively evolved metal- and Si-rich solutions whose temperatures ranged from 230 to 340° C. The fluctuating chemical composition and temperature of the solutions produced a complex depositional sequence of sulfides in the veins: chalcopyrite I, ± Fe-rich sphalerite, chalcopyrite II ("disease"), Fe-poor sphalerite, chalcopyrite III, galena, and pyrite II. (3) During the last stage, zeolites and Mg-poor calcite filled up the remaining spaces and newly formed cracks and replaced the host rock plagioclase. Analcite and stilbite were first to form in veins, possibly at temperatures below 200°C; analcite and earlier quartz were replaced by laumontite at 250°C, whereas calcite formation temperature ranged from 135 to 220°C. The last stage hydrothermal fluids were depleted in Mg and enriched in Ca and 18O compared to seawater and contained a mantle carbon component. This complex alteration history paralleling a complex mineral paragenesis can be interpreted as the result of a relatively long-term evolution of a hydrothermal system with superimposed shorter term fluctuations in solution temperature and composition. Hydrothermal activity probably began close to the axis of the Costa Rica Rift with the overall cooling of the system and multiple fracturing stages due to movement of the crust away from the axis and/or cooling of a magmatic heat source.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Lena River Delta, which is the largest delta in the Arctic, extends over an area of 32 000 km**2 and likely holds more than half of the entire soil organic carbon (SOC) mass stored in the seven major deltas in the northern permafrost regions. The geomorphic units of the Lena River Delta which were formed by true deltaic sedimentation processes are a Holocene river terrace and the active floodplains. Their mean SOC stocks for the upper 1 m of soils were estimated at 29 kg/m**2 ± 10 kg/m**2 and at 14 kg/m**2 ± 7 kg/m**2, respectively. For the depth of 1 m, the total SOC pool of the Holocene river terrace was estimated at 121 Tg ± 43 Tg, and the SOC pool of the active floodplains was estimated at 120 Tg ± 66 Tg. The mass of SOC stored within the observed seasonally thawed active layer was estimated at about 127 Tg assuming an average maximum active layer depth of 50 cm. The SOC mass which is stored in the perennially frozen ground at the increment 50-100 cm soil depth, which is currently excluded from intense biogeochemical exchange with the atmosphere, was estimated at 113 Tg. The mean nitrogen (N) stocks for the upper 1 m of soils were estimated at 1.2 kg/m**2 ± 0.4 kg/m**2 for the Holocene river terrace and at 0.9 kg/m**2 ± 0.4 kg/m**2 for the active floodplain levels, respectively. For the depth of 1 m, the total N pool of the river terrace was estimated at 4.8 Tg ± 1.5 Tg, and the total N pool of the floodplains was estimated at 7.7 Tg ± 3.6 Tg. Considering the projections for deepening of the seasonally thawed active layer up to 120 cm in the Lena River Delta region within the 21st century, these large carbon and nitrogen stocks could become increasingly available for decomposition and mineralization processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Twenty three groups of thermomineral springs in the eastern Chukotka with discharge temperature from 2 to 97°C and mineralization from 1.47 to 37.14 g/l are studied and compared with surface freshwater from their localities. dD and d18O values in surface waters vary from -121.4 to -89.5 per mil and from -16.4 to -11.1 per mil, respectively, while respective values in thermomineral waters range from -134.2 to -92.5 per mil and from -17.6 to -10.5 per mil. dD value in surface waters decreases from the east to the west, i.e. toward interior areas of the peninsula. Hydrothermal springs most depleted in deuterium (dD < -120 per mil) are localized in the geodynamically active Kolyuchinskaya-Mechigmen Depression. According to the proposed formation model of Chukotka thermomineral waters their observed chemical and isotopic characteristics could result from mixing (in different proportions) of surface waters with the deep-sourced isotopically light mineralized component (dD = ca. -138 per mil, d18O = ca. -19 per mil, ? = from 9.5 to 14.7 g/l). The latter originates most likely from subpermafrost waters subjected to slight cryogenic metamorphism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Different generations of complex authigenic carbonates formed in siliceous muds (lithologic Unit IV) and hemipelagic clays (lithologic Unit V) of ODP Site 643, Leg 104 Norwegian Sea. The dominant phase in Unit IV is an early diagenetic Mn, Fe-calcite with a strong negative d13C ( -14 to -16 per mil) signature, and slightly negative d180 values. The strong negative d13C results from extensive incorporation of 12C-enriched CO2 derived from bacterial degradation of marine organic matter into early Mn, Fe - calcite cements. Concomitant framboidal pyrite precipitation and abundant SEM microtextures showing excellent preservation of delicate structures of fragile diatom valves by outpourings with early Mn-calcites strongly support their shallow burial formation before the onset of compaction. Later generations of authigenic mineralizations in lithologic Unit IV include minor amounts of a second generation of calcite with platy crystals, possibly precipitated along with opal-A dissolution, and finally opal-CT crystallization in deeper seated environments overgrowing earlier precipitates with films and lepispheres. The last mineralization is collophane (fluor apatite) forming amorphous aggregates and tiny hexagonal crystals. Authigenic mineral assemblages in lithologic Unit V consist of rhodochrosites, transitional rhodochrosite/manganosiderites, and apatite. A negative d13C ( -7.1 to -15.6 per mil) and a fluctuating d18O signal indicates that the micritic to sparitic rhodochrosites, transitional rhodochrosites/manganosiderites were formed at various burial depths. CO2 resulted from organic matter degradation in the lowermost sulfate reduction zone and from biogenic methane generation in the lowermost sediments, resulting in variable and negative d13C signals. The change in carbonate mineralogy reflects major compositional differences compared to sediments in Unit IV. Most prominent is an increase in altered ash as a primary sediment component and a sudden decrease of siliceous microfossils. Upward diffusion of cations, lowered salinities in pore waters, and elevated temperatures provide diagenetic environments favoring increased remobilization processes.