976 resultados para Aug, Vincent
Resumo:
Evaluation of protein and metabolite expression patterns in blood using mass spectrometry and high-throughput antibody-based screening platforms has potential for the discovery of new biomarkers for managing breast cancer patient treatment. Previously identified blood-based breast cancer biomarkers, including cancer antigen 15.3 (CA15-3) are useful in combination with imaging (computed tomography scans, magnetic resonance imaging, X-rays) and physical examination for monitoring tumour burden in advanced breast cancer patients. However, these biomarkers suffer from insufficient levels of accuracy and with new therapies available for the treatment of breast cancer, there is an urgent need for reliable, non-invasive biomarkers that measure tumour burden with high sensitivity and specificity so as to provide early warning of the need to switch to an alternative treatment. The aim of this study was to identify a biomarker signature of tumour burden using cancer and non-cancer (healthy controls/non-malignant breast disease) patient samples. Results demonstrate that combinations of three candidate biomarkers from Glutamate, 12-Hydroxyeicosatetraenoic acid, Beta-hydroxybutyrate, Factor V and Matrix metalloproteinase-1 with CA15-3, an established biomarker for breast cancer, were found to mirror tumour burden, with AUC values ranging from 0.71 to 0.98 when comparing non-malignant breast disease to the different stages of breast cancer. Further validation of these biomarker panels could potentially facilitate the management of breast cancer patients, especially to assess changes in tumour burden in combination with imaging and physical examination.
Resumo:
Lung cancer is the second most common type of cancer in the world and is the most common cause of cancer-related death in both men and women. Research into causes, prevention and treatment of lung cancer is ongoing and much progress has been made recently in these areas, however survival rates have not significantly improved. Therefore, it is essential to develop biomarkers for early diagnosis of lung cancer, prediction of metastasis and evaluation of treatment efficiency, as well as using these molecules to provide some understanding about tumour biology and translate highly promising findings in basic science research to clinical application. In this investigation, two-dimensional difference gel electrophoresis and mass spectrometry were initially used to analyse conditioned media from a panel of lung cancer and normal bronchial epithelial cell lines. Significant proteins were identified with heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1), pyruvate kinase M2 isoform (PKM2), Hsc-70 interacting protein and lactate dehydrogenase A (LDHA) selected for analysis in serum from healthy individuals and lung cancer patients. hnRNPA2B1, PKM2 and LDHA were found to be statistically significant in all comparisons. Tissue analysis and knockdown of hnRNPA2B1 using siRNA subsequently demonstrated both the overexpression and potential role for this molecule in lung tumorigenesis. The data presented highlights a number of in vitro derived candidate biomarkers subsequently verified in patient samples and also provides some insight into their roles in the complex intracellular mechanisms associated with tumour progression.
Resumo:
We discuss the infrared limit for soft gluon k(t)-resummation and relate it to physical observables such as the intrinsic transverse momentum and the high energy limit of total cross-sections.
Resumo:
A simple analog instrumentation for Electrical Impedance Tomography is developed and calibrated using the practical phantoms. A constant current injector consisting of a modified Howland voltage controlled current source fed by a voltage controlled oscillator is developed to inject a constant current to the phantom boundary. An instrumentation amplifier, 50 Hz notch filter and a narrow band pass filter are developed and used for signal conditioning. Practical biological phantoms are developed and the forward problem is studied to calibrate the EIT-instrumentation. An array of sixteen stainless steel electrodes is developed and placed inside the phantom tank filled with KCl solution. 1 mA, 50 kHz sinusoidal current is injected at the phantom boundary using adjacent current injection protocol. The differential potentials developed at the voltage electrodes are measured for sixteen current injections. Differential voltage signal is passed through an instrumentation amplifier and a filtering block and measured by a digital multimeter. A forward solver is developed using Finite Element Method in MATLAB7.0 for solving the EIT governing equation. Differential potentials are numerically calculated using the forward solver with a simulated current and bathing solution conductivity. Measured potential data is compared with the differential potentials calculated for calibrating the instrumentation to acquire the voltage data suitable for better image reconstruction.
Resumo:
This paper addresses the problem of detecting and resolving conflicts due to timing constraints imposed by features in real-time and hybrid systems. We consider systems composed of a base system with multiple features or controllers, each of which independently advise the system on how to react to input events so as to conform to their individual specifications. We propose a methodology for developing such systems in a modular manner based on the notion of conflict-tolerant features that are designed to continue offering advice even when their advice has been overridden in the past. We give a simple priority-based scheme forcomposing such features. This guarantees the maximal use of each feature. We provide a formal framework for specifying such features, and a compositional technique for verifying systems developed in this framework.
Resumo:
The k-means algorithm is an extremely popular technique for clustering data. One of the major limitations of the k-means is that the time to cluster a given dataset D is linear in the number of clusters, k. In this paper, we employ height balanced trees to address this issue. Specifically, we make two major contributions, (a) we propose an algorithm, RACK (acronym for RApid Clustering using k-means), which takes time favorably comparable with the fastest known existing techniques, and (b) we prove an expected bound on the quality of clustering achieved using RACK. Our experimental results on large datasets strongly suggest that RACK is competitive with the k-means algorithm in terms of quality of clustering, while taking significantly less time.
Resumo:
The keyword based search technique suffers from the problem of synonymic and polysemic queries. Current approaches address only theproblem of synonymic queries in which different queries might have the same information requirement. But the problem of polysemic queries,i.e., same query having different intentions, still remains unaddressed. In this paper, we propose the notion of intent clusters, the members of which will have the same intention. We develop a clustering algorithm that uses the user session information in query logs in addition to query URL entries to identify cluster of queries having the same intention. The proposed approach has been studied through case examples from the actual log data from AOL, and the clustering algorithm is shown to be successful in discerning the user intentions.
Resumo:
Small open reading frames (sORFs) are an often overlooked feature of plant genomes. Initially found in plant viral RNAs and considered an interesting curiosity, an increasing number of these sORFs have been shown to encode functional peptides or play a regulatory role. The recent discovery that many of these sORFs initiate with start codons other than AUG, together with the identification of functional small peptides encoded in supposedly noncoding primary miRNA transcripts (pri-miRs), has drastically increased the number of potentially functional sORFs within the genome. Here we review how advances in technology, notably ribosome profiling (RP) assays, are complementing bioinformatics and proteogenomic methods to provide powerful ways to identify these elusive features of plant genomes, and highlight the regulatory roles sORFs can play.
Resumo:
We discuss a dynamic pricing model which will aid automobile manufacturer in choosing the right price for customer segment. Though there is oligopoly market structure, the customers get "locked" into a particular technology/company which virtually makes the situation akin to a monopoly. There are associated network externalities and positive feedback. The key idea in monopoly pricing lies in extracting the customer surplus by exploiting the respective elasticities of demand. We present a Walrasian general equilibrium approach to determine the segment price. We compare the prices obtained from optimization model with that from Walrasian dynamics. The results are encouraging and can serve as a critical factor in Customer Relationship Management (CRM) and thereby effectively manage the lock-in.
Resumo:
In this paper, we describe a system for the automatic recognition of isolated handwritten Devanagari characters obtained by linearizing consonant conjuncts. Owing to the large number of characters and resulting demands on data acquisition, we use structural recognition techniques to reduce some characters to others. The residual characters are then classified using the subspace method. Finally the results of structural recognition and feature-based matching are mapped to give final output. The proposed system Ifs evaluated for the writer dependent scenario.
Resumo:
Films of CuInSe2 were deposited onto glass substrates by a hot wall deposition method using bulk CuInSe2 as a source material. All the deposited CuInSe2 films were found to be polycrystalline in nature exhibiting the chalcopyrite structure with the crystallite orientation along (101),(112),(103),(211),(220),(312) and (400) directions. The photocurrent was found to increase with increase in film thickness and also with increase of light intensity. Photocurrent spectra show a peak related to the band-to-band transition. The spectral response of CuInSe2 thin films was studied by allowing the radiation to pass through a series of interference filters in the wavelength range 700-1200 rim. Films of higher thickness exhibited higher photosensitivity while low thickness films exhibited moderate photosensitivity. CuInSe2-based Solar cells with different types of buffer layers such as US, Cdse, CuInSe2 and CdSe0.7Te0.3 were fabricated. The current and voltage were measured using an optical power meter and an electrometer respectively. The fabricated solar cells were illuminated using 100 mW/cm(2) white light under AM1 conditions. (C) 2006 Elsevier Inc. All rights reserved.
Resumo:
Sepsis is the leading cause of death in intensive care units and results from a deleterious systemic host response to infection. Although initially perceived as potentially deleterious, catalytic antibodies have been proposed to participate in removal of metabolic wastes and protection against infection. Here we show that the presence in plasma of IgG endowed with serine protease-like hydrolytic activity strongly correlates with survival from sepsis. Variances of catalytic rates of IgG were greater in the case of patients with severe sepsis than healthy donors (P < 0.001), indicating that sepsis is associated with alterations in plasma levels of hydrolytic IgG. The catalytic rates of IgG from patients who survived were significantly greater than those of IgG from deceased patients (P < 0.05). The cumulative rate of survival was higher among patients exhibiting high rates of IgG-mediated hydrolysis as compared with patients with low hydrolytic rates (P < 0.05). An inverse correlation was also observed between the markers of severity of disseminated intravascular coagulation and rates of hydrolysis of patients' IgG. Furthermore, IgG from three surviving patients hydrolyzed factor VIII, one of which also hydrolyzed factor IX, suggesting that, in some patients, catalytic IgG may participate in the control of disseminated microvascular thrombosis. Our observations provide the first evidence that hydrolytic antibodies might play a role in recovery from a disease.
Resumo:
Nanotechnology is a new technology which is generating a lot of interest among academicians, practitioners and scientists. Critical research is being carried out in this area all over the world.Governments are creating policy initiatives to promote developments it the nanoscale science and technology developments. Private investment is also seeing a rising trend. Large number of academic institutions and national laboratories has set up research centers that are workingon the multiple applications of nanotechnology. Wide ranges of applications are claimed for nanotechnology. This consists of materials, chemicals, textiles, semiconductors, to wonder drug delivery systems and diagnostics. Nanotechnology is considered to be a next big wave of technology after information technology and biotechnology. In fact, nanotechnology holds the promise of advances that exceed those achieved in recent decades in computers and biotechnology. Much interest in nanotechnology also could be because of the fact that enormous monetary benefits are expected from nanotechnology based products. According to NSF, revenues from nanotechnology could touch $ 1 trillion by 2015. However much of the benefits are projected ones. Realizing claimed benefits require successful development of nanoscience andv nanotechnology research efforts. That is the journey of invention to innovation has to be completed. For this to happen the technology has to flow from laboratory to market. Nanoscience and nanotechnology research efforts have to come out in the form of new products, new processes, and new platforms.India has also started its Nanoscience and Nanotechnology development program in under its 10(th) Five Year Plan and funds worth Rs. One billion have been allocated for Nanoscience and Nanotechnology Research and Development. The aim of the paper is to assess Nanoscience and Nanotechnology initiatives in India. We propose a conceptual model derived from theresource based view of the innovation. We have developed a structured questionnaire to measure the constructs in the conceptual model. Responses have been collected from 115 scientists and engineers working in the field of Nanoscience and Nanotechnology. The responses have been analyzed further by using Principal Component Analysis, Cluster Analysis and Regression Analysis.
Resumo:
The concept of a fully-developed flow based on the hypothesis of selective memory is here applied to general wall-jet type flows. In the presence of a (constant) external stream, the free-stream velocity and the jet momentum flux are taken to be the chief quantities governing the development of the wall jet: two additional nondimensional parameters, representing a momentum flux Reynolds number and the relative momentum defect in the initial boundary layer, are shown to have only a secondary effect on the fully-developed flow. The standard correlations so determined are also found to predict quite well the flow development in Gartshore and Newman's experiments on wall jets in adverse pressure gradients; possible reasons for this somewhat surprising result are discussed. Finally it is shown, by application to the still-air case, that the parameters discovered in incompressible flow are, with appropriate but straightforward modification, successful in describing compressible wall jets also.