865 resultados para Attachment and garnishment.
Resumo:
BACKGROUND A newly developed collagen matrix (CM) of porcine origin has been shown to represent a potential alternative to palatal connective tissue grafts (CTG) for the treatment of single Miller Class I and II gingival recessions when used in conjunction with a coronally advanced flap (CAF). However, at present it remains unknown to what extent CM may represent a valuable alternative to CTG in the treatment of Miller Class I and II multiple adjacent gingival recessions (MAGR). The aim of this study was to compare the clinical outcomes following treatment of Miller Class I and II MAGR using the modified coronally advanced tunnel technique (MCAT) in conjunction with either CM or CTG. METHODS Twenty-two patients with a total of 156 Miller Class I and II gingival recessions were included in this study. Recessions were randomly treated according to a split-mouth design by means of MCAT + CM (test) or MCAT + CTG (control). The following measurements were recorded at baseline (i.e. prior to surgery) and at 12 months: Gingival Recession Depth (GRD), Probing Pocket Depth (PD), Clinical Attachment Level (CAL), Keratinized Tissue Width (KTW), Gingival Recession Width (GRW) and Gingival Thickness (GT). GT was measured 3-mm apical to the gingival margin. Patient acceptance was recorded using a Visual Analogue Scale (VAS). The primary outcome variable was Complete Root Coverage (CRC), secondary outcomes were Mean Root Coverage (MRC), change in KTW, GT, patient acceptance and duration of surgery. RESULTS Healing was uneventful in both groups. No adverse reactions at any of the sites were observed. At 12 months, both treatments resulted in statistically significant improvements of CRC, MRC, KTW and GT compared with baseline (p < 0.05). CRC was found at 42% of test sites and at 85% of control sites respectively (p < 0.05). MRC measured 71 ± 21% mm at test sites versus 90 ± 18% mm at control sites (p < 0.05). Mean KTW measured 2.4 ± 0.7 mm at test sites versus 2.7 ± 0.8 mm at control sites (p > 0.05). At test sites, GT values changed from 0.8 ± 0.2 to 1.0 ± 0.3 mm, and at control sites from 0.8 ± 0.3 to 1.3 ± 0.4 mm (p < 0.05). Duration of surgery and patient morbidity was statistically significantly lower in the test compared with the control group respectively (p < 0.05). CONCLUSIONS The present findings indicate that the use of CM may represent an alternative to CTG by reducing surgical time and patient morbidity, but yielded lower CRC than CTG in the treatment of Miller Class I and II MAGR when used in conjunction with MCAT.
Resumo:
BACKGROUND Regenerative periodontal surgery using the combination of enamel matrix derivative (EMD) and natural bone mineral (NBM) with and without addition of platelet-rich plasma (PRP) has been shown to result in substantial clinical improvements, but the long-term effects of this combination are unknown. METHODS The goal of this study was to evaluate the long-term (5-year) outcomes after regenerative surgery of deep intrabony defects with either EMD + NBM + PRP or EMD + NBM. Twenty-four patients were included. In each patient, one intrabony defect was randomly treated with either EMD + NBM + PRP or EMD + NBM. Clinical parameters were evaluated at baseline and 1 and 5 years after treatment. The primary outcome variable was clinical attachment level (CAL). RESULTS The sites treated with EMD + NBM + PRP demonstrated a mean CAL change from 10.5 ± 1.6 to 6.0 ± 1.7 mm (P <0.001) at 1 year and 6.2 ± 1.5 mm (P <0.001) at 5 years. EMD + NBM-treated defects showed a mean CAL change from 10.6 ± 1.7 to 6.1 ± 1.5 mm (P <0.001) at 1 year and 6.3 ± 1.4 mm (P <0.001) at 5 years. At 1 year, a CAL gain of ≥4 mm was measured in 83% (10 of 12) of the defects treated with EMD + NBM + PRP and in 100% (all 12) of the defects treated with EMD + NBM. Compared to baseline, in both groups at 5 years, a CAL gain of ≥4 mm was measured in 75% (nine of 12 in each group) of the defects. Four sites in the EMD + PRP + NBM group lost 1 mm of the CAL gained at 1 year. In the EMD + NBM group, one defect lost 2 mm and four other defects lost 1 mm of the CAL gained at 1 year. No statistically significant differences in any of the investigated parameters were observed between the two groups. CONCLUSIONS Within their limits, the present results indicate that: 1) the clinical outcomes obtained with both treatments can be maintained up to a period of 5 years; and 2) the use of PRP does not appear to improve the results obtained with EMD + NBM.
Resumo:
The paramyxovirus entry machinery consists of two glycoproteins that tightly cooperate to achieve membrane fusion for cell entry: the tetrameric attachment protein (HN, H, or G, depending on the paramyxovirus genus) and the trimeric fusion protein (F). Here, we explore whether receptor-induced conformational changes within morbillivirus H proteins promote membrane fusion by a mechanism requiring the active destabilization of prefusion F or by the dissociation of prefusion F from intracellularly preformed glycoprotein complexes. To properly probe F conformations, we identified anti-F monoclonal antibodies (MAbs) that recognize conformation-dependent epitopes. Through heat treatment as a surrogate for H-mediated F triggering, we demonstrate with these MAbs that the morbillivirus F trimer contains a sufficiently high inherent activation energy barrier to maintain the metastable prefusion state even in the absence of H. This notion was further validated by exploring the conformational states of destabilized F mutants and stabilized soluble F variants combined with the use of a membrane fusion inhibitor (3g). Taken together, our findings reveal that the morbillivirus H protein must lower the activation energy barrier of metastable prefusion F for fusion triggering.
Resumo:
Staphylococcus aureus is an opportunistic bacterial pathogen that can infect humans and other species. It utilizes an arsenal of virulence factors to cause disease, including secreted and cell wall anchored factors. Secreted toxins attack host cells, and pore-forming toxins destroy target cells by causing cell lysis. S. aureus uses cell-surface adhesins to attach to host molecules thereby facilitating host colonization. The Microbial Surface Components Recognizing Adhesive Matrix Molecules (MSCRAMMs) are a family of cell-wall anchored proteins that target molecules like fibronectin and fibrinogen. The Serine-aspartate repeat (Sdr) proteins are a subset of staphylococcal MSCRAMMs that share similar domain organization. Interestingly, the amino-terminus, is composed of three immunoglobulin-folded subdomains (N1, N2, and N3) that contain ligand-binding activity. Clumping factors A and B (ClfA and ClfB) and SdrG are Sdr proteins that bind to fibrinogen (Fg), a large, plasma glycoprotein that is activated during the clotting cascade to form fibrin. In addition to recognizing fibrinogen, ClfA and ClfB can bind to other host ligands. Analysis of S. aureus strains that cause osteomyelitis led to the discovery of the bone-sialoprotein-binding protein (Bbp), an Sdr protein. Because several MSCRAMMs target more than one molecule, I hypothesized that Bbp may recognize other host proteins. A ligand screen revealed that the recombinant construct BbpN2N3 specifically recognizes human Fg. Surface plasmon resonance was used to determine the affinity of BbpN2N3 for Fg, and a dissociation constant of 540 nM was determined. Binding experiments performed with recombinant Fg chains were used to map the binding of BbpN2N3 to the Fg Aalpha chain. Additionally, Bbp expressed on the surface of Lactococcus lactis and S. aureus Newman bald mediated attachment of these bacteria to Fg Aalpha. To further characterize the interaction between the two proteins, isothermal titration calorimetry and inhibition assays were conducted with synthetic Fg Aalpha peptides. To determine the physiological implications of Bbp binding to Fg, the effect of Bbp on fibrinogen clotting was studied. Results show that Bbp binding to Fg inhibits the formation of fibrin. The consequences of this interaction are currently under investigation. Together, these data demonstrate that human Fg is a novel ligand for Bbp. This study indicates that the MSCRAMM Bbp may aid in staphylococcal attachment by targeting both an extracellular matrix and a blood plasma protein. The implications of these novel findings are discussed.
Resumo:
Ace is an adhesin to collagen from Enterococcus faecalis expressed conditionally after growth in serum or in the presence of collagen. Here, we generated an ace deletion mutant and showed that it was significantly attenuated versus wild-type OG1RF in a mixed infection rat endocarditis model (P<0.0001), while no differences were observed in a peritonitis model. Complemented OG1RFDeltaace (pAT392::ace) enhanced early (4 h) heart valve colonization versus OG1RFDeltaace (pAT392) (P = 0.0418), suggesting that Ace expression is important for early attachment. By flow cytometry using specific anti-recombinant Ace (rAce) immunoglobulins (Igs), we showed in vivo expression of Ace by OG1RF cells obtained directly from infected vegetations, consistent with our previous finding of anti-Ace antibodies in E. faecalis endocarditis patient sera. Finally, rats actively immunized against rAce were less susceptible to infection by OG1RF than non-immunized (P = 0.0004) or sham-immunized (P = 0.0475) by CFU counts. Similarly, animals given specific anti-rAce Igs were less likely to develop E. faecalis endocarditis (P = 0.0001) and showed fewer CFU in vegetations (P = 0.0146). In conclusion, we have shown for the first time that Ace is involved in pathogenesis of, and is useful for protection against, E. faecalis experimental endocarditis.
Resumo:
Increasing multidrug resistance in Enterococcus faecalis, a nosocomial opportunist and common cause of bacterial endocarditis, emphasizes the need for alternative therapeutic approaches such as immunotherapy or immunoprophylaxis. In an earlier study, we demonstrated the presence of antibodies in E. faecalis endocarditis patient sera to recombinant forms of 9 E. faecalis cell wall-anchored proteins; of these, we have now characterized an in vivo-expressed locus of 3 genes and an associated sortase gene (encoding sortase C; SrtC). Here, using mutation analyses and complementation, we demonstrated that both the ebp (encoding endocarditis and biofilm-associated pili) operon and srtC are important for biofilm production of E. faecalis strain OG1RF. In addition, immunogold electron microscopy using antisera against EbpA-EbpC proteins as well as patient serum demonstrated that E. faecalis produces pleomorphic surface pili. Assembly of pili and their cell wall attachment appeared to occur via a mechanism of cross-linking of the Ebp proteins by the designated SrtC. Importantly, a nonpiliated, allelic replacement mutant was significantly attenuated in an endocarditis model. These biologically important surface pili, which are antigenic in humans during endocarditis and encoded by a ubiquitous E. faecalis operon, may be a useful immunotarget for studies aimed at prevention and/or treatment of this pathogen.
Resumo:
Grass carp reovirus (GCRV) is a member of the Aquareovirus genus of the family Reoviridae, a large family of double-stranded RNA (dsRNA) viruses infecting plants, insects, fishes and mammals. We report the first subnanometer-resolution three-dimensional structures of both GCRV core and virion by cryoelectron microscopy. These structures have allowed the delineation of interactions among the over 1000 molecules in this enormous macromolecular machine and a detailed comparison with other dsRNA viruses at the secondary-structure level. The GCRV core structure shows that the inner proteins have strong structural similarities with those of orthoreoviruses even at the level of secondary-structure elements, indicating that the structures involved in viral dsRNA interaction and transcription are highly conserved. In contrast, the level of similarity in structures decreases in the proteins situated in the outer layers of the virion. The proteins involved in host recognition and attachment exhibit the least similarities to other members of Reoviridae. Furthermore, in GCRV, the RNA-translocating turrets are in an open state and lack a counterpart for the sigma1 protein situated on top of the close turrets observed in mammalian orthoreovirus. Interestingly, the distribution and the organization of GCRV core proteins resemble those of the cytoplasmic polyhedrosis virus, a cypovirus and the structurally simplest member of the Reoviridae family. Our results suggest that GCRV occupies a unique structure niche between the simpler cypoviruses and the considerably more complex mammalian orthoreovirus, thus providing an important model for understanding the structural and functional conservation and diversity of this enormous family of dsRNA viruses.
Resumo:
It is not known how naive B cells compute divergent chemoattractant signals of the T-cell area and B-cell follicles during in vivo migration. Here, we used two-photon microscopy of peripheral lymph nodes (PLNs) to analyze the prototype G-protein-coupled receptors (GPCRs) CXCR4, CXCR5, and CCR7 during B-cell migration, as well as the integrin LFA-1 for stromal guidance. CXCR4 and CCR7 did not influence parenchymal B-cell motility and distribution, despite their role during B-cell arrest in venules. In contrast, CXCR5 played a nonredundant role in B-cell motility in follicles and in the T-cell area. B-cell migration in the T-cell area followed a random guided walk model, arguing against directed migration in vivo. LFA-1, but not α4 integrins, contributed to B-cell motility in PLNs. However, stromal network guidance was LFA-1 independent, uncoupling integrin-dependent migration from stromal attachment. Finally, we observed that despite a 20-fold reduction of chemokine expression in virus-challenged PLNs, CXCR5 remained essential for B-cell screening of antigen-presenting cells. Our data provide an overview of the contribution of prototype GPCRs and integrins during naive B-cell migration and shed light on the local chemokine availability that these cells compute.
Resumo:
Pathogenic streptococci and enterococci primarily rely on the conserved secretory (Sec) pathway for the translocation and secretion of virulence factors out of the cell. Since many secreted virulence factors in gram-positive organisms are subsequently attached to the bacterial cell surface via sortase enzymes, we sought to investigate the spatial relationship between secretion and cell wall attachment in Enterococcus faecalis. We discovered that sortase A (SrtA) and sortase C (SrtC) are colocalized with SecA at single foci in the enterococcus. The SrtA-processed substrate aggregation substance accumulated in single foci when SrtA was deleted, implying a single site of secretion for these proteins. Furthermore, in the absence of the pilus-polymerizing SrtC, pilin subunits also accumulate in single foci. Proteins that localized to single foci in E. faecalis were found to share a positively charged domain flanking a transmembrane helix. Mutation or deletion of this domain in SrtC abolished both its retention at single foci and its function in efficient pilus assembly. We conclude that this positively charged domain can act as a localization retention signal for the focal compartmentalization of membrane proteins.
Resumo:
The tonotopic organization of the mammalian cochlea is accompanied by structural gradients which include the somatic lengths of outer hair cells (OHCs). These receptors rest upon the vibrating portion of the basilar membrane and have been reported to exhibit motile responses following chemical and electrical stimulation. These movements were examined in detail in this dissertation. It was found that isolated OHCs cultured in vitro respond to chemical depolarization with slow tonic movements, and to electrical waveforms with bi-directional, frequency following movements extending from DC to at least 10 kHz.^ Slow contractions were also elicited following electrical stimulation, bath incubation in carbachol (a cholinergic agonist), and increases in extracellular K+ concentration as little as 50 mM.^ Isolated OHCs display anatomical features which are remarkable when contrasted with those prepared from intact receptor organs. A complex structure located between the cuticular plate and the nuclear membrane was consistently observed and was examined by serial cross-sections which revealed a network of non-membrane bound densities. This corresponded to a granular complex seen at the light microscope level. The complex was composed of dense regions of organelles, striated structures embedded within the core, and a circumferential network of microtubules residing in the peri-nuclear portion of the cell. In cells which had lost their nuclear attachment to the terminal synaptic body, the granular complex could be made to contract without effecting any change in cellular length, implying that the complex may be the driving force behind certain aspects of the motile response.^ Most cells displayed movements which revealed asymmetries analogous to those reported for OHC receptor potentials in vivo. The contraction phase (for longer cells) was shown to have a small time constant (approximately 400 microseconds) and saturated with limited displacements. The expansion phase had time constants as large as 1.3 milliseconds but yielded displacements as much as 60 percent larger than those seen for contractions.^ Additional waveform characteristics seen in the in vivo response could be emulated either by biasing the cell's resting length with either direct current, triggering contractions via large electrical displacements, or incubation with depolarizing compounds.^ Alternatively, short (20-30 um) cells revealed more linear response characteristics to the probe stimulus. Partial saturation was achieved and revealed a DC component which was opposite in polarity to that seen in longer cells. (Abstract shortened with permission of author.) ^