951 resultados para Assembler language (Computer program language)
Resumo:
The diversity of ethnic and cultural groups and the effects of language in the therapeutic relationship are timely professional issues of concern to occupational therapy practitioners. The tri-ethnic, tri-cultural South Florida area offers a natural environment where one can study how patient-therapist interactions are influenced by language barriers in a diverse society. This study examines the effects of language on the adequacy of occupational therapy services, specifically how language affects the length of the treatment program. The nature of diagnosis therapists' ethnicity, and how they impact treatment outcomes are also addressed. A sample was drawn from the occupational therapy outpatient department of a large county hospital. Data taken from patients' charts examined race, sex, age, diagnosis, and language. Number of treatment sessions and length of treatment were viewed as proxy measures for adequacy. Findings indicate that the effect of language cannot be understood aside from ethnicity. Implications for occupational therapy practice are discussed.
Resumo:
Acknowledgements The authors thank the children, their parents and school staff, who participated in this research, and who so willingly gave us their time, help and support. They also thank Steven Knox and Alan Clelland for their work on programming the mobile phone application. Additional thanks to DynaVox Inc. for supplying the Vmax communication devices to run our system on and Sensory Software Ltd for supplying us with their AAC software. This research was supported by the Research Council UKs Digittal Economy Programme and EPSRC (Grant numbers EP/F067151/1, EP/F066880/1, EP/E011764/1, EP/H022376/1, and EP/H022570 /1).
Resumo:
Users seeking information may not find relevant information pertaining to their information need in a specific language. But information may be available in a language different from their own, but users may not know that language. Thus users may experience difficulty in accessing the information present in different languages. Since the retrieval process depends on the translation of the user query, there are many issues in getting the right translation of the user query. For a pair of languages chosen by a user, resources, like incomplete dictionary, inaccurate machine translation system may exist. These resources may be insufficient to map the query terms in one language to its equivalent terms in another language. Also for a given query, there might exist multiple correct translations. The underlying corpus evidence may suggest a clue to select a probable set of translations that could eventually perform a better information retrieval. In this paper, we present a cross language information retrieval approach to effectively retrieve information present in a language other than the language of the user query using the corpus driven query suggestion approach. The idea is to utilize the corpus based evidence of one language to improve the retrieval and re-ranking of news documents in the other language. We use FIRE corpora - Tamil and English news collections in our experiments and illustrate the effectiveness of the proposed cross language information retrieval approach.
Resumo:
COSTA, Umberto Souza; MOREIRA, Anamaria Martins; MUSICANTE, Matin A.; SOUZA NETO, Plácido A. JCML: A specification language for the runtime verification of Java Card programs. Science of Computer Programming. [S.l]: [s.n], 2010.
Resumo:
Learning English as a foreign language (EFL) entails different factors. Language learners use different strategies in order to make their language acquisition successful. Motivation and self-regulated learning are other factors that influence how successful the EFL learner is. This paper aims to analyze the beliefs of upper secondary students in a Swedish school about learning EFL, as well as how their beliefs relate to what is specified in the Swedish curriculum. An analysis of the differences between students’ beliefs and what is stated in the curriculum was done. A survey was conducted on a total of 54 students who were enrolled in the social sciences program. The results showed that students believed that motivation and self-regulated learning were important factors for a successful learning. For them, the language skill of reception is more important than production, which does not correspond with what it is stated in the national curriculum. First and second year students’ beliefs were similar in most of the cases, but not all of them.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Two out of three English Language Learners (ELLs) graduate from secondary schools nationwide. Of the nearly five million ELLs in public schools, more than 70% of these students’ first language is Spanish. In order to understand and resolve this phenomena and in an effort to increase the number of graduates, this research examined what high school Latino ELLs identified as the major external and internal factors that support or challenge them on the graduation pathway. The study utilized a 32 quantitative and qualitative question student survey, as well as student focus groups. Both the survey and the focus groups were conducted in English and Spanish. The questions considered the following factors: 1) value of education; 2) expectations in achieving their long-term goals; 3) current education levels; 4) expectations before coming to the United States; 5) family obligations; and 6) future aspirations. The survey was administered to 159 Latino ELLs enrolled in grades 9-12. Research took place at three high schools that provide English for Speakers of Other Languages (ESOL) classes in a large school system in the Mid-Atlantic region. The three schools involved in the study have more than 1,500 ELLs. Two of the schools had large ESOL instructional programs, and one school had a comparatively smaller ESOL program. The majority of students surveyed were from El Salvador (72%) and Guatemala (12.6%). Using Qualtrics, an independent facilitator and a bilingual translator administered the online survey tool to the students during their ESOL classes. Two weeks later, the researcher hosted three follow-up focus groups, totaling 37 students from those students who took the survey. Each focus group was conducted at the three schools by the lead researcher and the translator. The purpose of the focus group was to obtain deeper insight on how secondary age Latino ELLs defined success in school, what they identified to be their support factors, and how previous and present experiences helped or hindered their goals. From the research findings, ten recommendations range from suggested policy updates to cross-cultural/equity training for students and staff; they were developed, stemming from the findings and what the students identified.
Resumo:
Decision-making is often dependent on uncertain data, e.g. data associated with confidence scores or probabilities. We present a comparison of different informa- tion presentations for uncertain data and, for the first time, measure their effects on human decision-making. We show that the use of Natural Language Genera- tion (NLG) improves decision-making un- der uncertainty, compared to state-of-the- art graphical-based representation meth- ods. In a task-based study with 442 adults, we found that presentations using NLG lead to 24% better decision-making on av- erage than the graphical presentations, and to 44% better decision-making when NLG is combined with graphics. We also show that women achieve significantly better re- sults when presented with NLG output (an 87% increase on average compared to graphical presentations).
Resumo:
COSTA, Umberto Souza; MOREIRA, Anamaria Martins; MUSICANTE, Matin A.; SOUZA NETO, Plácido A. JCML: A specification language for the runtime verification of Java Card programs. Science of Computer Programming. [S.l]: [s.n], 2010.
Resumo:
International audience
Resumo:
Human relationships have long been studied by scientists from domains like sociology, psychology, literature, etc. for understanding people's desires, goals, actions and expected behaviors. In this dissertation we study inter-personal relationships as expressed in natural language text. Modeling inter-personal relationships from text finds application in general natural language understanding, as well as real-world domains such as social networks, discussion forums, intelligent virtual agents, etc. We propose that the study of relationships should incorporate not only linguistic cues in text, but also the contexts in which these cues appear. Our investigations, backed by empirical evaluation, support this thesis, and demonstrate that the task benefits from using structured models that incorporate both types of information. We present such structured models to address the task of modeling the nature of relationships between any two given characters from a narrative. To begin with, we assume that relationships are of two types: cooperative and non-cooperative. We first describe an approach to jointly infer relationships between all characters in the narrative, and demonstrate how the task of characterizing the relationship between two characters can benefit from including information about their relationships with other characters in the narrative. We next formulate the relationship-modeling problem as a sequence prediction task to acknowledge the evolving nature of human relationships, and demonstrate the need to model the history of a relationship in predicting its evolution. Thereafter, we present a data-driven method to automatically discover various types of relationships such as familial, romantic, hostile, etc. Like before, we address the task of modeling evolving relationships but don't restrict ourselves to two types of relationships. We also demonstrate the need to incorporate not only local historical but also global context while solving this problem. Lastly, we demonstrate a practical application of modeling inter-personal relationships in the domain of online educational discussion forums. Such forums offer opportunities for its users to interact and form deeper relationships. With this view, we address the task of identifying initiation of such deeper relationships between a student and the instructor. Specifically, we analyze contents of the forums to automatically suggest threads to the instructors that require their intervention. By highlighting scenarios that need direct instructor-student interactions, we alleviate the need for the instructor to manually peruse all threads of the forum and also assist students who have limited avenues for communicating with instructors. We do this by incorporating the discourse structure of the thread through latent variables that abstractly represent contents of individual posts and model the flow of information in the thread. Such latent structured models that incorporate the linguistic cues without losing their context can be helpful in other related natural language understanding tasks as well. We demonstrate this by using the model for a very different task: identifying if a stated desire has been fulfilled by the end of a story.
Resumo:
The current study is a post-hoc analysis of data from the original randomized control trial of the Play and Language for Autistic Youngsters (PLAY) Home Consultation program, a parent-mediated, DIR/Floortime based early intervention program for children with ASD (Solomon, Van Egeren, Mahone, Huber, & Zimmerman, 2014). We examined 22 children from the original RCT who received the PLAY program. Children were split into two groups (high and lower functioning) based on the ADOS module administered prior to intervention. Fifteen-minute parent-child video sessions were coded through the use of CHILDES transcription software. Child and maternal language, communicative behaviors, and communicative functions were assessed in the natural language samples both pre- and post-intervention. Results demonstrated significant improvements in both child and maternal behaviors following intervention. There was a significant increase in child verbal and non-verbal initiations and verbal responses in whole group analysis. Total number of utterances, word production, and grammatical complexity all significantly improved when viewed across the whole group of participants; however, lexical growth did not reach significance. Changes in child communicative function were especially noteworthy, and demonstrated a significant increase in social interaction and a significant decrease in non-interactive behaviors. Further, mothers demonstrated an increase in responsiveness to the child’s conversational bids, increased ability to follow the child’s lead, and a decrease in directiveness. When separated for analyses within groups, trends emerged for child and maternal variables, suggesting greater gains in use of communicative function in both high and low groups over changes in linguistic structure. Additional analysis also revealed a significant inverse relationship between maternal responsiveness and child non-interactive behaviors; as mothers became more responsive, children’s non-engagement was decreased. Such changes further suggest that changes in learned skills following PLAY parent training may result in improvements in child social interaction and language abilities.
Resumo:
Secure Multi-party Computation (MPC) enables a set of parties to collaboratively compute, using cryptographic protocols, a function over their private data in a way that the participants do not see each other's data, they only see the final output. Typical MPC examples include statistical computations over joint private data, private set intersection, and auctions. While these applications are examples of monolithic MPC, richer MPC applications move between "normal" (i.e., per-party local) and "secure" (i.e., joint, multi-party secure) modes repeatedly, resulting overall in mixed-mode computations. For example, we might use MPC to implement the role of the dealer in a game of mental poker -- the game will be divided into rounds of local decision-making (e.g. bidding) and joint interaction (e.g. dealing). Mixed-mode computations are also used to improve performance over monolithic secure computations. Starting with the Fairplay project, several MPC frameworks have been proposed in the last decade to help programmers write MPC applications in a high-level language, while the toolchain manages the low-level details. However, these frameworks are either not expressive enough to allow writing mixed-mode applications or lack formal specification, and reasoning capabilities, thereby diminishing the parties' trust in such tools, and the programs written using them. Furthermore, none of the frameworks provides a verified toolchain to run the MPC programs, leaving the potential of security holes that can compromise the privacy of parties' data. This dissertation presents language-based techniques to make MPC more practical and trustworthy. First, it presents the design and implementation of a new MPC Domain Specific Language, called Wysteria, for writing rich mixed-mode MPC applications. Wysteria provides several benefits over previous languages, including a conceptual single thread of control, generic support for more than two parties, high-level abstractions for secret shares, and a fully formalized type system and operational semantics. Using Wysteria, we have implemented several MPC applications, including, for the first time, a card dealing application. The dissertation next presents Wys*, an embedding of Wysteria in F*, a full-featured verification oriented programming language. Wys* improves on Wysteria along three lines: (a) It enables programmers to formally verify the correctness and security properties of their programs. As far as we know, Wys* is the first language to provide verification capabilities for MPC programs. (b) It provides a partially verified toolchain to run MPC programs, and finally (c) It enables the MPC programs to use, with no extra effort, standard language constructs from the host language F*, thereby making it more usable and scalable. Finally, the dissertation develops static analyses that help optimize monolithic MPC programs into mixed-mode MPC programs, while providing similar privacy guarantees as the monolithic versions.
Resumo:
Natural language processing has achieved great success in a wide range of ap- plications, producing both commercial language services and open-source language tools. However, most methods take a static or batch approach, assuming that the model has all information it needs and makes a one-time prediction. In this disser- tation, we study dynamic problems where the input comes in a sequence instead of all at once, and the output must be produced while the input is arriving. In these problems, predictions are often made based only on partial information. We see this dynamic setting in many real-time, interactive applications. These problems usually involve a trade-off between the amount of input received (cost) and the quality of the output prediction (accuracy). Therefore, the evaluation considers both objectives (e.g., plotting a Pareto curve). Our goal is to develop a formal understanding of sequential prediction and decision-making problems in natural language processing and to propose efficient solutions. Toward this end, we present meta-algorithms that take an existent batch model and produce a dynamic model to handle sequential inputs and outputs. Webuild our framework upon theories of Markov Decision Process (MDP), which allows learning to trade off competing objectives in a principled way. The main machine learning techniques we use are from imitation learning and reinforcement learning, and we advance current techniques to tackle problems arising in our settings. We evaluate our algorithm on a variety of applications, including dependency parsing, machine translation, and question answering. We show that our approach achieves a better cost-accuracy trade-off than the batch approach and heuristic-based decision- making approaches. We first propose a general framework for cost-sensitive prediction, where dif- ferent parts of the input come at different costs. We formulate a decision-making process that selects pieces of the input sequentially, and the selection is adaptive to each instance. Our approach is evaluated on both standard classification tasks and a structured prediction task (dependency parsing). We show that it achieves similar prediction quality to methods that use all input, while inducing a much smaller cost. Next, we extend the framework to problems where the input is revealed incremen- tally in a fixed order. We study two applications: simultaneous machine translation and quiz bowl (incremental text classification). We discuss challenges in this set- ting and show that adding domain knowledge eases the decision-making problem. A central theme throughout the chapters is an MDP formulation of a challenging problem with sequential input/output and trade-off decisions, accompanied by a learning algorithm that solves the MDP.
Resumo:
International audience