903 resultados para Artificial intelligence -- Data processing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Vias de Comunicação e Transportes

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electricity Markets are not only a new reality but an evolving one as the involved players and rules change at a relatively high rate. Multi-agent simulation combined with Artificial Intelligence techniques may result in very helpful sophisticated tools. This paper presents a new methodology for the management of coalitions in electricity markets. This approach is tested using the multi-agent market simulator MASCEM (Multi-Agent Simulator of Competitive Electricity Markets), taking advantage of its ability to provide the means to model and simulate Virtual Power Players (VPP). VPPs are represented as coalitions of agents, with the capability of negotiating both in the market and internally, with their members in order to combine and manage their individual specific characteristics and goals, with the strategy and objectives of the VPP itself. A case study using real data from the Iberian Electricity Market is performed to validate and illustrate the proposed approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

in RoboCup 2007: Robot Soccer World Cup XI

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neste documento, são investigados vários métodos usados na inteligência artificial, com o objetivo de obter previsões precisas da evolução dos mercados financeiros. O uso de ferramentas lineares como os modelos AR, MA, ARMA e GARCH têm muitas limitações, pois torna-se muito difícil adaptá-los às não linearidades dos fenómenos que ocorrem nos mercados. Pelas razões anteriormente referidas, os algoritmos como as redes neuronais dinâmicas (TDNN, NARX e ESN), mostram uma maior capacidade de adaptação a estas não linearidades, pois não fazem qualquer pressuposto sobre as distribuições de probabilidade que caracterizam estes mercados. O facto destas redes neuronais serem dinâmicas, faz com que estas exibam um desempenho superior em relação às redes neuronais estáticas, ou outros algoritmos que não possuem qualquer tipo de memória. Apesar das vantagens reveladas pelas redes neuronais, estas são um sistema do tipo black box, o que torna muito difícil extrair informação dos pesos da rede. Isto significa que estes algoritmos devem ser usados com precaução, pois podem tornar-se instáveis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O sector do turismo é uma área francamente em crescimento em Portugal e que tem desenvolvido a sua divulgação e estratégia de marketing. Contudo, apenas se prende com indicadores de desempenho e de oferta instalada (número de quartos, hotéis, voos, estadias), deixando os indicadores estatísticos em segundo plano. De acordo com o “ Travel & tourism Competitiveness Report 2013”, do World Economic Forum, classifica Portugal em 72º lugar no que respeita à qualidade e cobertura da informação estatística, disponível para o sector do Turismo. Refira-se que Espanha ocupa o 3º lugar. Uma estratégia de mercado, sem base analítica, que sustente um quadro de orientações específico e objetivo, com relevante conhecimento dos mercados alvo, dificilmente é compreensível ou até mesmo materializável. A implementação de uma estrutura de Business Intelligence que permita a realização de um levantamento e tratamento de dados que possibilite relacionar e sustentar os resultados obtidos no sector do turismo revela-se fundamental e crucial, para que sejam criadas estratégias de mercado. Essas estratégias são realizadas a partir da informação dos turistas que nos visitam, e dos potenciais turistas, para que possam ser cativados no futuro. A análise das características e dos padrões comportamentais dos turistas permite definir perfis distintos e assim detetar as tendências de mercado, de forma a promover a oferta dos produtos e serviços mais adequados. O conhecimento obtido permite, por um lado criar e disponibilizar os produtos mais atrativos para oferecer aos turistas e por outro informá-los, de uma forma direcionada, da existência desses produtos. Assim, a associação de uma recomendação personalizada que, com base no conhecimento de perfis do turista proceda ao aconselhamento dos melhores produtos, revela-se como uma ferramenta essencial na captação e expansão de mercado.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Em Portugal Continental a problemática das listas de inscritos para cirurgia e os seus tempos de espera são matérias que preocupam a sociedade portuguesa desde o início da década de noventa, do século XX. Atualmente as ferramentas de business intelligence ganham cada vez maior importância nas organizações inseridas num contexto mais complexo, competitivo e que exige respostas rápidas, adequadas e em constante mudança. O projeto desenvolvido consiste na implementação de uma aplicação de business intelligence, na Unidade Central de Gestão de Inscritos para Cirurgia, sedeada na Administração Central do Sistema de Saúde, I.P., que apoie a gestão das listas de inscritos para cirurgia de forma mais atempada, com maior qualidade e rigor, e com benefícios inquestionáveis para os utentes. Este projeto visa a monitorização de indicadores basilares; melhoria do controlo do desempenho dos hospitais; comparação entre os valores estabelecidos para determinados indicadores e os desvios verificados; simulação do impacto de algumas medidas, na lista de inscritos para cirurgia, antes da sua implementação; e facultar informação que permita adequar, a todo o momento, a oferta à procura, em determinadas patologias cirúrgicas. Os objetivos do projeto, definidos à priori, foram concretizados na sua totalidade, tendo sido a aplicação concluída com sucesso. Sugere-se, como ações futuras, acrescer novos indicadores e mais dimensões de análise à aplicação desenvolvida no âmbito deste projeto, alargando a capacidade de análise da Unidade Central de Gestão de Inscritos para Cirurgia, com inerente aumento da sua competência de gestão da Lista de Inscritos para Cirurgia em Portugal Continental.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Internet das Coisas tal como o Big Data e a análise dos dados são dos temas mais discutidos ao querermos observar ou prever as tendências do mercado para as próximas décadas, como o volume económico, financeiro e social, pelo que será relevante perceber a importância destes temas na atualidade. Nesta dissertação será descrita a origem da Internet das Coisas, a sua definição (por vezes confundida com o termo Machine to Machine, redes interligadas de máquinas controladas e monitorizadas remotamente e que possibilitam a troca de dados (Bahga e Madisetti 2014)), o seu ecossistema que envolve a tecnologia, software, dispositivos, aplicações, a infra-estrutura envolvente, e ainda os aspetos relacionados com a segurança, privacidade e modelos de negócios da Internet das Coisas. Pretende-se igualmente explicar cada um dos “Vs” associados ao Big Data: Velocidade, Volume, Variedade e Veracidade, a importância da Business Inteligence e do Data Mining, destacando-se algumas técnicas utilizadas de modo a transformar o volume dos dados em conhecimento para as empresas. Um dos objetivos deste trabalho é a análise das áreas de IoT, modelos de negócio e as implicações do Big Data e da análise de dados como elementos chave para a dinamização do negócio de uma empresa nesta área. O mercado da Internet of Things tem vindo a ganhar dimensão, fruto da Internet e da tecnologia. Devido à importância destes dois recursos e á falta de estudos em Portugal neste campo, com esta dissertação, sustentada na metodologia do “Estudo do Caso”, pretende-se dar a conhecer a experiência portuguesa no mercado da Internet das Coisas. Visa-se assim perceber quais os mecanismos utilizados para trabalhar os dados, a metodologia, sua importância, que consequências trazem para o modelo de negócio e quais as decisões tomadas com base nesses mesmos dados. Este estudo tem ainda como objetivo incentivar empresas portuguesas que estejam neste mercado ou que nele pretendam aceder, a adoptarem estratégias, mecanismos e ferramentas concretas no que diz respeito ao Big Data e análise dos dados.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the fundamental problems with image processing of petrographic thin sections is that the appearance (colour I intensity) of a mineral grain will vary with the orientation of the crystal lattice to the preferred direction of the polarizing filters on a petrographic microscope. This makes it very difficult to determine grain boundaries, grain orientation and mineral species from a single captured image. To overcome this problem, the Rotating Polarizer Stage was used to replace the fixed polarizer and analyzer on a standard petrographic microscope. The Rotating Polarizer Stage rotates the polarizers while the thin section remains stationary, allowing for better data gathering possibilities. Instead of capturing a single image of a thin section, six composite data sets are created by rotating the polarizers through 900 (or 1800 if quartz c-axes measurements need to be taken) in both plane and cross polarized light. The composite data sets can be viewed as separate images and consist of the average intensity image, the maximum intensity image, the minimum intensity image, the maximum position image, the minimum position image and the gradient image. The overall strategy used by the image processing system is to gather the composite data sets, determine the grain boundaries using the gradient image, classify the different mineral species present using the minimum and maximum intensity images and then perform measurements of grain shape and, where possible, partial crystallographic orientation using the maximum intensity and maximum position images.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Basic relationships between certain regions of space are formulated in natural language in everyday situations. For example, a customer specifies the outline of his future home to the architect by indicating which rooms should be close to each other. Qualitative spatial reasoning as an area of artificial intelligence tries to develop a theory of space based on similar notions. In formal ontology and in ontological computer science, mereotopology is a first-order theory, embodying mereological and topological concepts, of the relations among wholes, parts, parts of parts, and the boundaries between parts. We shall introduce abstract relation algebras and present their structural properties as well as their connection to algebras of binary relations. This will be followed by details of the expressiveness of algebras of relations for region based models. Mereotopology has been the main basis for most region based theories of space. Since its earliest inception many theories have been proposed for mereotopology in artificial intelligence among which Region Connection Calculus is most prominent. The expressiveness of the region connection calculus in relational logic is far greater than its original eight base relations might suggest. In the thesis we formulate ways to automatically generate representable relation algebras using spatial data based on region connection calculus. The generation of new algebras is a two pronged approach involving splitting of existing relations to form new algebras and refinement of such newly generated algebras. We present an implementation of a system for automating aforementioned steps and provide an effective and convenient interface to define new spatial relations and generate representable relational algebras.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les avancés dans le domaine de l’intelligence artificielle, permettent à des systèmes informatiques de résoudre des tâches de plus en plus complexes liées par exemple à la vision, à la compréhension de signaux sonores ou au traitement de la langue. Parmi les modèles existants, on retrouve les Réseaux de Neurones Artificiels (RNA), dont la popularité a fait un grand bond en avant avec la découverte de Hinton et al. [22], soit l’utilisation de Machines de Boltzmann Restreintes (RBM) pour un pré-entraînement non-supervisé couche après couche, facilitant grandement l’entraînement supervisé du réseau à plusieurs couches cachées (DBN), entraînement qui s’avérait jusqu’alors très difficile à réussir. Depuis cette découverte, des chercheurs ont étudié l’efficacité de nouvelles stratégies de pré-entraînement, telles que l’empilement d’auto-encodeurs traditionnels(SAE) [5, 38], et l’empilement d’auto-encodeur débruiteur (SDAE) [44]. C’est dans ce contexte qu’a débuté la présente étude. Après un bref passage en revue des notions de base du domaine de l’apprentissage machine et des méthodes de pré-entraînement employées jusqu’à présent avec les modules RBM, AE et DAE, nous avons approfondi notre compréhension du pré-entraînement de type SDAE, exploré ses différentes propriétés et étudié des variantes de SDAE comme stratégie d’initialisation d’architecture profonde. Nous avons ainsi pu, entre autres choses, mettre en lumière l’influence du niveau de bruit, du nombre de couches et du nombre d’unités cachées sur l’erreur de généralisation du SDAE. Nous avons constaté une amélioration de la performance sur la tâche supervisée avec l’utilisation des bruits poivre et sel (PS) et gaussien (GS), bruits s’avérant mieux justifiés que celui utilisé jusqu’à présent, soit le masque à zéro (MN). De plus, nous avons démontré que la performance profitait d’une emphase imposée sur la reconstruction des données corrompues durant l’entraînement des différents DAE. Nos travaux ont aussi permis de révéler que le DAE était en mesure d’apprendre, sur des images naturelles, des filtres semblables à ceux retrouvés dans les cellules V1 du cortex visuel, soit des filtres détecteurs de bordures. Nous aurons par ailleurs pu montrer que les représentations apprises du SDAE, composées des caractéristiques ainsi extraites, s’avéraient fort utiles à l’apprentissage d’une machine à vecteurs de support (SVM) linéaire ou à noyau gaussien, améliorant grandement sa performance de généralisation. Aussi, nous aurons observé que similairement au DBN, et contrairement au SAE, le SDAE possédait une bonne capacité en tant que modèle générateur. Nous avons également ouvert la porte à de nouvelles stratégies de pré-entraînement et découvert le potentiel de l’une d’entre elles, soit l’empilement d’auto-encodeurs rebruiteurs (SRAE).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L'application de classifieurs linéaires à l'analyse des données d'imagerie cérébrale (fMRI) a mené à plusieurs percées intéressantes au cours des dernières années. Ces classifieurs combinent linéairement les réponses des voxels pour détecter et catégoriser différents états du cerveau. Ils sont plus agnostics que les méthodes d'analyses conventionnelles qui traitent systématiquement les patterns faibles et distribués comme du bruit. Dans le présent projet, nous utilisons ces classifieurs pour valider une hypothèse portant sur l'encodage des sons dans le cerveau humain. Plus précisément, nous cherchons à localiser des neurones, dans le cortex auditif primaire, qui détecteraient les modulations spectrales et temporelles présentes dans les sons. Nous utilisons les enregistrements fMRI de sujets soumis à 49 modulations spectro-temporelles différentes. L'analyse fMRI au moyen de classifieurs linéaires n'est pas standard, jusqu'à maintenant, dans ce domaine. De plus, à long terme, nous avons aussi pour objectif le développement de nouveaux algorithmes d'apprentissage automatique spécialisés pour les données fMRI. Pour ces raisons, une bonne partie des expériences vise surtout à étudier le comportement des classifieurs. Nous nous intéressons principalement à 3 classifieurs linéaires standards, soient l'algorithme machine à vecteurs de support (linéaire), l'algorithme régression logistique (régularisée) et le modèle bayésien gaussien naïf (variances partagées).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cette thèse porte sur une classe d'algorithmes d'apprentissage appelés architectures profondes. Il existe des résultats qui indiquent que les représentations peu profondes et locales ne sont pas suffisantes pour la modélisation des fonctions comportant plusieurs facteurs de variation. Nous sommes particulièrement intéressés par ce genre de données car nous espérons qu'un agent intelligent sera en mesure d'apprendre à les modéliser automatiquement; l'hypothèse est que les architectures profondes sont mieux adaptées pour les modéliser. Les travaux de Hinton (2006) furent une véritable percée, car l'idée d'utiliser un algorithme d'apprentissage non-supervisé, les machines de Boltzmann restreintes, pour l'initialisation des poids d'un réseau de neurones supervisé a été cruciale pour entraîner l'architecture profonde la plus populaire, soit les réseaux de neurones artificiels avec des poids totalement connectés. Cette idée a été reprise et reproduite avec succès dans plusieurs contextes et avec une variété de modèles. Dans le cadre de cette thèse, nous considérons les architectures profondes comme des biais inductifs. Ces biais sont représentés non seulement par les modèles eux-mêmes, mais aussi par les méthodes d'entraînement qui sont souvent utilisés en conjonction avec ceux-ci. Nous désirons définir les raisons pour lesquelles cette classe de fonctions généralise bien, les situations auxquelles ces fonctions pourront être appliquées, ainsi que les descriptions qualitatives de telles fonctions. L'objectif de cette thèse est d'obtenir une meilleure compréhension du succès des architectures profondes. Dans le premier article, nous testons la concordance entre nos intuitions---que les réseaux profonds sont nécessaires pour mieux apprendre avec des données comportant plusieurs facteurs de variation---et les résultats empiriques. Le second article est une étude approfondie de la question: pourquoi l'apprentissage non-supervisé aide à mieux généraliser dans un réseau profond? Nous explorons et évaluons plusieurs hypothèses tentant d'élucider le fonctionnement de ces modèles. Finalement, le troisième article cherche à définir de façon qualitative les fonctions modélisées par un réseau profond. Ces visualisations facilitent l'interprétation des représentations et invariances modélisées par une architecture profonde.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dans ce travail, nous explorons la faisabilité de doter les machines de la capacité de prédire, dans un contexte d'interaction homme-machine (IHM), l'émotion d'un utilisateur, ainsi que son intensité, de manière instantanée pour une grande variété de situations. Plus spécifiquement, une application a été développée, appelée machine émotionnelle, capable de «comprendre» la signification d'une situation en se basant sur le modèle théorique d'évaluation de l'émotion Ortony, Clore et Collins (OCC). Cette machine est apte, également, à prédire les réactions émotionnelles des utilisateurs, en combinant des versions améliorées des k plus proches voisins et des réseaux de neurones. Une procédure empirique a été réalisée pour l'acquisition des données. Ces dernières ont fourni une connaissance consistante aux algorithmes d'apprentissage choisis et ont permis de tester la performance de la machine. Les résultats obtenus montrent que la machine émotionnelle proposée est capable de produire de bonnes prédictions. Une telle réalisation pourrait encourager son utilisation future dans des domaines exploitant la reconnaissance automatique de l'émotion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dans le domaine des neurosciences computationnelles, l'hypothèse a été émise que le système visuel, depuis la rétine et jusqu'au cortex visuel primaire au moins, ajuste continuellement un modèle probabiliste avec des variables latentes, à son flux de perceptions. Ni le modèle exact, ni la méthode exacte utilisée pour l'ajustement ne sont connus, mais les algorithmes existants qui permettent l'ajustement de tels modèles ont besoin de faire une estimation conditionnelle des variables latentes. Cela nous peut nous aider à comprendre pourquoi le système visuel pourrait ajuster un tel modèle; si le modèle est approprié, ces estimé conditionnels peuvent aussi former une excellente représentation, qui permettent d'analyser le contenu sémantique des images perçues. Le travail présenté ici utilise la performance en classification d'images (discrimination entre des types d'objets communs) comme base pour comparer des modèles du système visuel, et des algorithmes pour ajuster ces modèles (vus comme des densités de probabilité) à des images. Cette thèse (a) montre que des modèles basés sur les cellules complexes de l'aire visuelle V1 généralisent mieux à partir d'exemples d'entraînement étiquetés que les réseaux de neurones conventionnels, dont les unités cachées sont plus semblables aux cellules simples de V1; (b) présente une nouvelle interprétation des modèles du système visuels basés sur des cellules complexes, comme distributions de probabilités, ainsi que de nouveaux algorithmes pour les ajuster à des données; et (c) montre que ces modèles forment des représentations qui sont meilleures pour la classification d'images, après avoir été entraînés comme des modèles de probabilités. Deux innovations techniques additionnelles, qui ont rendu ce travail possible, sont également décrites : un algorithme de recherche aléatoire pour sélectionner des hyper-paramètres, et un compilateur pour des expressions mathématiques matricielles, qui peut optimiser ces expressions pour processeur central (CPU) et graphique (GPU).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’apprentissage machine est un vaste domaine où l’on cherche à apprendre les paramètres de modèles à partir de données concrètes. Ce sera pour effectuer des tâches demandant des aptitudes attribuées à l’intelligence humaine, comme la capacité à traiter des don- nées de haute dimensionnalité présentant beaucoup de variations. Les réseaux de neu- rones artificiels sont un exemple de tels modèles. Dans certains réseaux de neurones dits profonds, des concepts "abstraits" sont appris automatiquement. Les travaux présentés ici prennent leur inspiration de réseaux de neurones profonds, de réseaux récurrents et de neuroscience du système visuel. Nos tâches de test sont la classification et le débruitement d’images quasi binaires. On permettra une rétroac- tion où des représentations de haut niveau (plus "abstraites") influencent des représentations à bas niveau. Cette influence s’effectuera au cours de ce qu’on nomme relaxation, des itérations où les différents niveaux (ou couches) du modèle s’interinfluencent. Nous présentons deux familles d’architectures, l’une, l’architecture complètement connectée, pouvant en principe traiter des données générales et une autre, l’architecture convolutionnelle, plus spécifiquement adaptée aux images. Dans tous les cas, les données utilisées sont des images, principalement des images de chiffres manuscrits. Dans un type d’expérience, nous cherchons à reconstruire des données qui ont été corrompues. On a pu y observer le phénomène d’influence décrit précédemment en comparant le résultat avec et sans la relaxation. On note aussi certains gains numériques et visuels en terme de performance de reconstruction en ajoutant l’influence des couches supérieures. Dans un autre type de tâche, la classification, peu de gains ont été observés. On a tout de même pu constater que dans certains cas la relaxation aiderait à apprendre des représentations utiles pour classifier des images corrompues. L’architecture convolutionnelle développée, plus incertaine au départ, permet malgré tout d’obtenir des reconstructions numériquement et visuellement semblables à celles obtenues avec l’autre architecture, même si sa connectivité est contrainte.