931 resultados para Annihilation reactions
Resumo:
OBJECTIVE - To assess drug reactions and report the drugs involved and the most frequent types of skin reactions.METHODS - A retrospective and descriptive study. Data of inpatients at the Dermatology Ward with initial diagnosis of adverse drug reactions were evaluated from January 1999 to June 2004. Patients with confirmed diagnosis were included in the study based on clinical and histopathological criteria, after analysis of medical charts.RESULTS - Initial diagnosis of adverse drug reactions was confirmed in 121 patients. Forty-three patients were included in the study; 51.2% were females and 86% were caucasians. A total of 48,8% were on one drug only. Antibiotics were the most commonly used drug (20%) and accounted for 33% of the drug eruptions. The second group comprised anti-inflammatory drugs (16 7%), followed by anticonvulsants (13%), analgesic/antipyretic (13%.) agents. Skin eruption manifested as maculopapular exanthema in 41.9% patients, erythrodermia in 25.6%, and urticaria in 23.3%.CONCLUSION - Maculopapular exanthema was the main type of skin reaction triggered by use of drugs, and these reactions were most frequently caused by antibiotics.
Resumo:
Chemokines are important chemotactic cytokines that play a fundamental role in the trafficking of leukocytes to sites of inflammation. They are also potent cell-activating factors, inducing cytokine and histamine release and free radical production, a fact that makes them particularly important in the pathogenesis of allergic inflammation. The action of chemokines is regulated at the level of agonist production and processing as well as at the level of receptor expression and coupling. Therefore, an analysis of the ligands must necessarily consider receptors. Eosinophils are target cells involved in the allergic inflammatory response since they are able to release a wide variety of mediators including CC and CXC chemokines and express their receptors. These mediators could damage the airway epithelial cells and might be important to stimulate other cells inducing an amplification of the allergic response. This review focuses on recently emerging data pertaining to the importance of chemokines and chemokine receptors in promoting eosinophil activation and migration during the allergic inflammatory process. The analysis of the function of eosinophils and their chemokine receptors during allergic inflammation might be a good approach to understanding the determinants of asthma severity and to developing novel therapies.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The defense reactions against biological (Histoplasma capsulatum and Escherichia coli) and non-biological materials (China ink and nylon thread) were tested in vivo in third instar larvae of Dermatobia hominis. The cellular defense performed by larval hemocytes was observed under electron microscopy. China ink particles were phagocytosed by granular cells 5 h after injection. E. coli cells were internalized by granular cells as early as 5 min after injection and totally cleared 180 min post-injection, when many hemocytes appeared disintegrated and others in process of recovering. H. capsulatum yeasts provoked, 24 h after being injected, the beginning of nodule formation. Nylon thread was encapsulated 24 h after the introduction into the hemocoel. Our results suggest that granular cells were the phagocytic cells and also the responsible for the triggering of nodule and capsule formation. In the presence of yeasts cells and nylon thread, they released their granules that chemotactically attracted the plasmatocytes that on their turn, flattened to surround and isolate the foreign material.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Three-body charge transfer reactions with Coulomb interaction in the final state are considered within the framework of coordinate-space integro-differential Faddeev-Hahn-type equations within two- and six-state close-coupling approximations. The method is employed to study direct muon transfer in low-energy collisions of the muonic hydrogen H-mu by helium (He2+) and lithium (Li3+) nuclei. The experimentally observed isotopic dependence is reproduced.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We study the production of charmed mesons (D) and baryons (Lambda(c)) in antiproton- proton ((p) over barp) annihilation close to their respective production thresholds. The elementary charm production process is described by either baryon/ meson exchange or by quark/ gluon dynamics. Effects of the interactions in the initial and final states are taken into account rigorously. The calculations are performed in close analogy to our earlier study on (p) over bar -> (Lambda) over bar Lambda and (p) over barp (K) over bar K by connecting the processes via SU(4) flavor symmetry. Our predictions for the (Lambda) over bar (c)Lambda(c) production cross section are in the order of 1 to 7 mb, i. e. a factor of around 10-70 smaller than the corresponding cross sections for (Lambda) over bar Lambda However, they are 100 to 1000 times larger than predictions of other model calculations in the literature. on the other hand, the resulting cross sections for (D) over barD production are found to be in the order of 10(-2) - 10(-1)mu b and they turned out to be comparable to those obtained in other studies.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The Ag precipitation and dissolution reactions in the Cu-3 wt.% Al-4 wt.% Ag alloy were studied using isothermal and non-isothermal analyses. The activation energy values, obtained for the Ag precipitation reaction indicated that, when the Kissinger, Ozawa and Johnson-MehI-Avrami methods are compared, the Kissinger method is the most appropriate. Although the Johnson-Mehl-Avrami equation often does not fit precipitation data, the energy values obtained for Ag precipitation kinetics are in agreement with what was experimentally observed. For the dissolution reaction of Ag precipitates the activation energy values obtained from the Kissinger and Ozawa methods are higher than that found in the literature for the Ag dissolution in Cu. This discrepancy seems to be related to the fact that the activation energy is influenced by the heating rate. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The isothermal kinetics of Ag precipitation was studied in Cu-Al-Ag alloys with concentrations ranging from 2 to 8 wt.%Al and 2 to 12 wt.%Ag, using scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDX) and microhardness measurements. The results indicated a change in the precipitates growing mechanism from diffusion to interface controlled process, probably due to a change in the nature of the interface with the Ag and Al enrichment of the precipitates. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
The organic fraction of urban solid residues disposed of in sanitary landfills during the decomposition yields biogas and leachate, which are sources of pollution. Leachate is a resultant liquid from the decomposition of substances contained in solid residues and it contains in its composition organic and inorganic substances. Literature shows an increase in the use of thermoanalytical techniques to study the samples with environmental interest, this way thermogravimetry is used in this research. Thermogravimetric studies (TG curves) carried out on leachate and residues shows similarities in the thermal behavior, although presenting complex composition. Residue samples were collected from landfills, composting plants, sewage treatment stations, leachate, which after treatment, were submitted for thermal analysis. Kinetic parameters were determined using the Flynn-Wall-Ozawa method. In this case they show little divergence between the kinetic parameter that can be attributed to different decomposition reaction and presence of organic compounds in different phases of the decomposition with structures modified during degradation process and also due to experimental conditions of analysis.
Resumo:
Energy fluctuations of a solute molecule embedded in a polar solvent are investigated to depict the energy landscape for solvation dynamics. The system is modeled by a charged molecule surrounded by two layers of solvent dipolar molecules with simple rotational dynamics. Individual solvent molecules are treated as simple dipoles that can point toward or away from the central charge (Ising spins). Single-spin-flip Monte Carlo kinetics simulations are carried out in a two-dimensional lattice for different central charges, radii of outer shell, and temperatures. By analyzing the density of states as a function of energy and temperatures, we have determined the existence of multiple freezing transitions. Each of them can be associated with the freezing of a different layer of the solvent. (C) 2002 American Institute of Physics.