911 resultados para Angiotensin-converting enzyme inhibitors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The activity of glutamine synthetase isolated from the germinated seedlings of Phaseolus aureus was regulated by feedback inhibition by alanine, glycine, histidine, AMP, and ADP. When glutamate was the varied substrate, alanine, histidine, and glycine were partial noncompetitive, competitive, and mixed-type inhibitors, respectively. The type of inhibition by these amino acids was confirmed by fractional inhibition analysis. The adenine nucleotides, AMP and ADP, completely inhibited the enzyme activity and were competitive with respect to ATP. Multiple inhibition analyses revealed the presence of separate and nonexclusive binding sites for the amino acids and mutually exclusive sites for adenine nucleotides. Cumulative inhibition was observed with these end products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Serine hydroxymethyltransferase from mammalian and bacterial sources is a pyridoxal-5'-phosphate-containing enzyme, but the requirement of pyridoxal-5'-phosphate for the activity of the enzyme from plant sources is not clear. The specific activity of serine hydroxymethyltransferase isolated from mung bean (Vigna radiata) seedlings in the presence and absence of pyridoxal-5'-phosphate was comparable at every step of the purification procedure. The mung bean enzyme did not show the characteristic visible absorbance spectrum of pyridoxal-5'-phosphate protein. Unlike the enzymes from sheep, monkey, and human liver, which were converted to the apoenzyme upon treatment with L-cysteine and dialysis, the mung bean enzyme similarly treated was fully active. Additional evidence in support of the suggestion that pyridoxal-5'-phosphate may not be required for the mung bean enzyme was the observation that pencillamine, a well-known inhibitor of pyridoxal-5'-phosphate enzymes, did not perturb the enzyme spectrum or inhibit the activity of mung bean serine hydroxymethyltransferase. The sheep liver enzyme upon interaction with O-amino-D-serine gave a fluorescence spectrum with an emission maximum at 455 nm when excited at 360 nm. A 100-fold higher concentration of mung bean enzyme-O-amino-D-serine complex did not yield a fluorescence spectrum. The following observations suggest that pyridoxal-5'-phosphate normally present as a coenzyme in serine hydroxymethyltransferase was probably replaced in mung bean serine hydroxymethyltransferase by a covalently bound carbonyl group: (a) inhibiton by phenylhydrazine and hydroxylamine, which could not be reversed by dialysis and or addition of pyridoxal-5'-phosphate; (b) irreversible inactivation by sodium borohydride; (c) a spectrum characteristic of a phenylhydrazone upon interaction with phenylhydrazine; and (d) the covalent labeling of the enzyme with substrate/product serine and glycine upon reduction with sodium borohydride. These results indicate that in mung bean serine hydroxymethyltransferase, a covalently bound carbonyl group has probably replaced the pyridoxal-5'-phosphate that is present in the mammalian and bacterial enzymes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple and rapid affinity chromatographic method for the isolation of aspartate transcarbamylase from germinated seedlings of mung bean (Phaseolus aureus) was developed. A partially purified preparation of the enzyme was chromatographed on an affinity column containing aspartate linked to CNBr-activated Sepharose 4B. Aspartate transcarbamylase was specifically eluted from the column with 10 mImage aspartate or 0.5 Image KCl. The enzyme migrated as a single sharp band during disc electrophoresis at pH 8.6 on polyacrylamide gels. Electrophoresis of the sodium dodecyl sulfate-treated enzyme showed two distinct protein bands, suggesting that the mung bean aspartate transcarbamylase was made up of nonidentical subunits. Like the enzyme purified by conventional procedures, this enzyme preparation also exhibited positive homotropic interactions with carbamyl phosphate and negative heterotropic interactions with UMP. This method was extended to the purification of aspartate transcarbamylase from Lathyrus sativus, Eleucine coracona, and Trigonella foenum graecum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hyoscyamine 6 beta-hydroxylase (H6H; EC 1.14.11.11), an important enzyme in the biosynthesis of tropane alkaloids, catalyzes the hydroxylation of hyoscyamine to give 6 beta-hydroxyhyoscyamine and its epoxidation in the biosynthetic pathway leading to scopolamine. Datura metel produces scopolamine as the predominant tropane alkaloid. The cDNA encoding H6H from D. mete! (DmH6H) was cloned, heterologously expressed and biochemically characterized. The purified recombinant His-tagged H6H from D. mete! (DmrH6H) was capable of converting hyoscyamine to scopolamine. The functionally expressed DmrH6H was confirmed by HPLC and ESI-MS verification of the products, 6 beta-hydroxyhyoscyamine and its derivative, scopolamine; the DmrH6H epoxidase activity was low compared to the hydroxylase activity. The K-m values for both the substrates, hyoscyamine and 2-oxoglutarate, were 50 mu M each. The CD (circular dichroism) spectrum of the DmrH6H indicated a preponderance of alpha-helicity in the secondary structure. From the fluorescence studies, Stern-Volmer constants for hyoscyamine and 2-oxoglutarate were found to be 0.14 M-1 and 0.56 M-1, respectively. These data suggested that the binding of the substrates, hyoscyamine and 2-oxoglutarate, to the enzyme induced significant conformational changes. (C) 2010 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The silk gland of Bombyx mori is a terminally differentiated tissue in which DNA replication continues without cell or nuclear division during larval development. DNA polymerase-delta activity increases in the posterior and middle silk glands during the development period, reaching maximal levels in the middle of the fifth instar larvae. The enzyme has been purified to homogeneity by a series of column chromatographic and affinity purification steps. It is a multimer comprising of three heterogeneous subunits, M(r) 170,000, 70,000, and 42,000. An auxiliary protein from B. mori silk glands, analogous to the proliferating cell nuclear antigen, enhances the processivity of the enzyme and stimulates catalytic activity by 3-fold. This auxiliary protein has also been purified to homogeneity. It is a dimer comprised of a single type M(r) 40,000 subunit. Polymerase-delta possesses an intrinsic 3' --> 5' exonuclease activity which participates in proofreading by mismatch match repair during DNA synthesis and is devoid of any primase activity. DNA polymerase-delta activity could be further distinguished from polymerase-alpha from the same tissue based on its sensitivity to various inhibitors and polyclonal antibodies to the individual enzymes. Like DNA polymerase-alpha, polymerase-delta is also tightly associated with the nuclear matrix. The polymerase alpha-primase complex could be readily separated from polymerase-delta (exonuclease) in the purification protocol adopted. DNA polymerase-delta from B. mori silk glands resembles the mammalian delta-polymerases. Considering that both DNA polymerase-delta and -alpha are present in nearly equal amounts in this highly replicative tissue and their close association with the nuclear matrix, the involvement of both the enzymes in the chromosomal endoreplication process in B. mori is strongly implicated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lääkeainemetabolialla tarkoitetaan entsymaattisia reaktioita, jotka muuttavat lääkeaineita paremmin elimistöstä poistuvaan muotoon. Lääkeaineet voivat vaikuttaa toistensa metaboliaan inhiboimalla tai indusoimalla metaboloivia entsyymejä. Tällaisten interaktioiden seurauksena lääkeaineen pitoisuus elimistössä voi kasvaa jopa toksiseksi tai vähentyä merkittävästi. Tämä on erityisesti ongelmana silloin, kun käytössä on useita lääkkeitä samanaikaisesti. Lääketutkimuksessa onkin keskitytty tällaisten interaktioiden ennustamiseen ja niitä yritetään välttää tai ainakin vähentää. Työssä tutkittiin medetomidiinia, jonka on äskettäin havaittu metaboloituvan UDP-glukuronosyylitransferaasien (UGT) välityksellä. Työn tarkoituksena oli löytää medetomidiinin glukuronidaatiota inhiboivia yhdisteitä. Lisäksi haluttiin selvittää mahdollisen inhibition mekanismeja. On yleistä tutkia tietyn entsyymin substraatin interaktioita muiden saman perheen entsyymien kanssa. On kuitenkin harvinaisempaa tutkia tällaisia interaktioita kahden eri entsyymiperheen välillä. Tässä työssä tutkittiin inhiboivatko mahdolliset sytokromi P450 -entsyymiä (CYP) inhiboivat yhdisteet myös medetomidiinia glukuronoivia UDP-glukuronosyylitransferaaseja. Glukuronidaation inhibitiota tutkittiin HPLC-menetelmällä, joka on kehitetty aiemmin medetomidiinin glukuronidaation tutkimiseen. Aluksi glukuronidaatiota tutkittiin ilman inhibiittoreita. Tämän jälkeen tutkittiin kolmen mahdollisen inhibiittoriyhdisteen vaikutuksia medetomidiinin glukuronidaatioon ja tuloksia verrattiin ilman inhibiittoria saatuihin tuloksiin. Kolmen tutkitun yhdisteen havaittiin inhiboivan medetomidiinin glukuronidaatiota. Tutkimuksessa havaittiin myös mielenkiintoinen ilmiö, jossa inhibiittoriyhdisteen sitoutuminen aiheutti entsyymikineettisiä muutoksia UDP-glukuronosyylitransferaasin toiminnassa. On mielenkiintoista, että samat yhdisteet inhiboivat sekä CYP- että UGT-metaboliaa. Tulosten perusteella voidaan päätellä, että jos CYP ja UGT metaboloivat samaa yhdistettä, on mahdollista että yhdisteen rakenteelliset analogit aiheuttavat interaktioita molempien entsyymien kanssa. Uusia lääkeaineita kehitettäessä onkin otettava huomioon yleisesti tunnettujen CYP-entsyymien lisäksi myös UGT:t ja niiden mahdolliset yhteisvaikutukset.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An enzyme which cleaves the benzene ring of 3,5-dichiorocatechol has been purified to homogeneity from Pseudomonas cepacia CSV90, grown with 2,4-dichlorophenoxyacetic acid (2,4-D) as the sole carbon source. The enzyme was a nonheme ferric dioxygenase and catalyzed the intradiol cleavage of all the examined catechol derivatives, 3,5-dichlorocatechol having the highest specificity constant of 7.3 μM−1 s−1 in an air-saturated buffer. No extradiol-cleaving activity was observed. Thus, the enzyme was designated as 3,5-dichlorocatechol 1,2-dioxygenase. The molecular weight of the native enzyme was ascertained to be 56,000 by light scattering method, while the Mr value of the enzyme denatured with 6 M guanidine-HCl or sodium dodecyl sulfate was 29,000 or 31,600, respectively, suggesting that the enzyme was a homodimer. The iron content was estimated to be 0.89 mol per mole of enzyme. The enzyme was deep red and exhibited a broad absorption spectrum with a maximum at around 425 nm, which was bleached by sodium dithionite, and shifted to 515 nm upon anaerobic 3,5-dichlorocatechol binding. The catalytic constant and the Km values for 3,5-dichlorocatechol and oxygen were 34.7 s−1 and 4.4 and 652 μM, respectively, at pH 8 and 25°C. Some heavy metal ions, chelating agents and sulfhydryl reagents inhibited the activity. The NH2-terminal sequence was determined up to 44 amino acid residues and compared with those of the other catechol dioxygenases previously reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chloroplastic isoform of glutamine synthetase (GS(2), EC 6.3.1.2) from normal and water stressed safflower (Carthamus tinctorius L. cv.A-300) leaves has been purified to apparent electrophoretic homogeneity by a procedure involving anion-exchange, hydrophobic and size-exclusion chromatography followed by electroelution of the protein from preparative polyacrylamide gels. The observed molecular weight of the native protein varied from 305-330 kDa depending on the sizing column employed. The native protein is composed of 44 kDa subunits. Under conditions of saturating ammonium and at ATP levels of 0.1-10 mM, double-reciprocal plots with respect to glutamate are biphasic and concave downward at high concentrations of the varied substrate for normal enzyme but are linear for enzyme from water-stressed plants. Under subsaturating ATP levels, K-Glu is over 18-fold lower for enzyme from stressed leaves. The K-m, (ATP) varies with Mg2+ levels in the assay mixture. Double-reciprocal plots of initial velocity with respect to ATP at changing fixed levels of NH4+ are linear for normal enzyme but are curved upwards for enzyme from stressed leaves. Initial velocity data of 1/v vs. 1/ammonium for the enzyme from both the sources are non-linear (curved upwards) when ATP is saturating. At subsaturating ATP levels, the data are linear for normal enzyme but are still non-linear for the enzyme from stressed leaves. The results obtained suggest positively cooperative binding of NH4+ A V-max(/2) value of 3.6 mM for Mg2+ was obtained at 5 mM ATP. The isoelectric point of the native protein from normal and stressed leaves was determined to be, respectively, 5.6 and 6.1. The mixed competitive and competitive inhibitors, methionine sulfoximine and ADP and K-i values of 0.086 mM (0.017 for the enzyme from stressed leaves) and 2.15 mM (1.70 for the enzyme from stressed leaves), respectively. Enzyme from stressed leaves is not inhibited by 5 mM proline. The observed kinetic constants of GS(2) from normal and water stressed safflower seedlings are discussed in relation to the known water-stress tolerance of this crop plant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The activity of many proteins orchestrating different biological processes is regulated by allostery, where ligand binding at one site alters the function of another site. Allosteric changes can be brought about by either a change in the dynamics of a protein, or alteration in its mean structure. We have investigated the mechanisms of allostery induced by chemically distinct ligands in the cGMP-binding, cGMP-specific phosphodiesterase, PDE5. PDE5 is the target for catalytic site inhibitors, such as sildenafil, that are used for the treatment of erectile dysfunction and pulmonary hypertension. PDE5 is a multidomain protein and contains two N-terminal cGMP-specific phosphodiesterase, bacterial adenylyl cyclase, FhLA transcriptional regulator (GAF) domains, and a C-terminal catalytic domain. Cyclic GMP binding to the GAFa domain and sildenafil binding to the catalytic domain result in conformational changes, which to date have been studied either with individual domains or with purified enzyme. Employing intramolecular bioluminescence resonance energy transfer, which can monitor conformational changes both in vitro and in intact cells, we show that binding of cGMP and sildenafil to PDE5 results in distinct conformations of the protein. Metal ions bound to the catalytic site also allosterically modulated cGMP- and sildenafil-induced conformational changes. The sildenafil-induced conformational change was temperature-sensitive, whereas cGMP-induced conformational change was independent of temperature. This indicates that different allosteric ligands can regulate the conformation of a multidomain protein by distinct mechanisms. Importantly, this novel PDE5 sensor has general physiological and clinical relevance because it allows the identification of regulators that can modulate PDE5 conformation in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The DNA content in the silk glands of the non-mulberry silkworm Philosamia ricini increases continuously during the fourth and fifth instars of larval development indicating high levels of DNA replication in this terminally differentiated tissue. Concomitantly, the DNA polymerase alpha activity also increases in the middle and the posterior silk glands during development, reaching maximal levels in the middle of the fifth larval instar. A comparable level of DNA polymerase delta/epsilon was also observed in this highly replicative tissue. The DNA polymerase alpha-primase complex from the silk glands of P. ricini has been purified to homogeneity by conventional column chromatography as well as by immunoaffinity techniques. The molecular mass of the native enzyme is 560 kDa and the enzyme comprises six non-identical subunits. The identity of the enzyme as DNA polymerase alpha has been established by its sensitivity to inhibitors such as aphidicolin, N-ethylmaleimide, butylphenyl-dGTP, butylanilino-dATP and antibodies to polymerase alpha. The enzyme possesses primase activity capable of initiating DNA synthesis on single-stranded DNA templates. The tight association of polymerase and primase activities at a constant ratio of 6:1 is observed through all the purification steps. The 180 kDa subunit harbours the polymerase activity, while the primase activity is associated with the 45 kDa subunit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrolysis of beta-lactam antibiotics using zinc-containing metallo-beta-lactamases (m beta l) is one of the major bacterial defense systems. These enzymes can catalyze the hydrolysis of a variety of antibiotics including the latest generation of cephalosporins, cephamycins, and imipenem. It is shown in this paper that the cephalosporins having heterocyclic - SR side chains are less prone to m beta l-mediated hydrolysis than the antibiotics that do not have such side chains. This is partly due to the inhibition of enzyme activity by the thione moieties eliminated during hydrolysis. When the enzymatic hydrolysis of oxacillin was carried out in the presence of heterocyclic thiones such as MU, MDT, DMETT, and MMA, the catalytic activity of the enzyme was inhibited significantly by these compounds. Although the heterocyclic - SR moieties eliminated from the beta-lactams upon hydrolysis undergo a rapid tautomerism between thione and thiol forms, these compounds act as thiolate ligands toward zinc(II) ions. The structural characterization of two model tetranuclear zinc(II) thiolate complexes indicates that the -SR side chains eliminated from the antibiotics may interact with the zinc(II) metal center of m beta l through their sulfur atoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thirteen terrestrial psychrotrophic bacteria from Antarctica were screened for the presence of a thermolabile ribonuclease (RNAase-HL). The enzyme was detected in three isolates of Pseudomonas fluorescens and one isolate of Pseudomonas syringae. It was purified from one P. Fluorescens isolate and the molecular mass of the enzyme as determined by SDS-PAGE was 16 kDa. RNAase-HL exhibited optimum activity around 40 degrees C at pH 7.4. It could hydrolyse Escherichia coli RNA and the synthetic substrates poly(A), poly(C), poly(U) and poly(A-U). Unlike the crude RNAase from mesophilic P. Fluorescens and pure bovine pancreatic RNAase A which were active even at 65 degrees C, RNAase-HL was totally and irreversibly inactivated at 65 degrees C.