920 resultados para Amyloid Beta-protein


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coupled bone turnover is directed by the expression of receptor-activated NF-kappa B ligand (RANKL) and its decoy receptor, osteoprotegerin (OPG). Proinflammatory cytokines, such as interleukin-1 beta (IL-1 beta) and tumor necrosis factor-alpha (TNF-alpha) induce RANKL expression in bone marrow stromal cells. Here, we report that IL-1 beta and TNF-alpha-induced RANKL requires p38 mitogen-activating protein kinase (MAPK) pathway activation for maximal expression. Real-time PCR was used to assess the p38 contribution toward IL-1 beta and TNF-alpha-induced RANKL mRNA expression. Steady-state RANKL RNA levels were increased approximately 17-fold by IL-1 beta treatment and subsequently reduced similar to 70%-90% when p38 MAPK was inhibited with SB203580. RANKL mRNA stability data indicated that p38 MAPK did not alter the rate of mRNA decay in IL-1 beta-induced cells. Using a RANKL-luciferase cell line receptor containing a 120-kB segment of the 5' flanking region of the RANKL gene, reporter expression was stimulated 4-5-fold by IL-1 beta or TNF-alpha treatment. IL-1 beta-induced RANKL reporter expression was completely blocked with specific p38 inhibitors as well as dominant negative mutant constructs of MAPK kinase-3 and -6. In addition, blocking p38 signaling in bone marrow stromal cells partially inhibited IL-1 beta and TNF-alpha-induced osteoclastogenesis in vitro. Results from these studies indicate that p38 MAPK is a major signaling pathway involved in IL-1 beta and TNF-alpha-induced RANKL expression in bone marrow stromal cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 5-year survival rate for oral cavity cancer is poorer than for breast, colon or prostate cancer, and has improved only slightly in the last three decades. Hence, new therapeutic strategies are urgently needed. Here we demonstrate by tissue micro array analysis for the first time that RNA-binding protein La is significantly overexpressed in oral squamous cell carcinoma (SCC). Within this study we therefore addressed the question whether siRNA-mediated depletion of the La protein may interfere with known tumor-promoting characteristics of head and neck SCC cells. Our studies demonstrate that the La protein promotes cell proliferation, migration and invasion of lymph node-metastasized hypopharyngeal SCC cells. We also reveal that La is required for the expression of beta-catenin as well as matrix metalloproteinase type 2 (MMP-2) within these cells. Taken together these data suggest a so far unknown function of the RNA-binding protein La in promoting tumor progression of head and neck SCC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crotoxin, the main toxin of South American rattlesnake (Crotalus durissus terrificus) venom, was the first snake venom protein to be purified and crystallized. Crotoxin is a heterodimeric beta-neurotoxin that consists of a weakly toxic basic phospholipase A(2) and a nonenzymatic, non-toxic acidic component (crotapotin). The classic biological activities normally attributed to crotoxin include neurotoxicity, myotoxicity, nephrotoxicity and cardiotoxicity. However, numerous studies in recent years have shown that crotoxin also has immunomodulatory, anti-inflammatory, anti-microbial, anti-tumor and analgesic actions. In this review, we describe the historical background to the discovery of crotoxin and its main toxic activities and then discuss recent structure-function studies and investigations that have led to the identification of novel pharmacological activities for the toxin. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: NEP1-like proteins (NLPs) are a novel family of microbial elicitors of plant necrosis. Some NLPs induce a hypersensitive-like response in dicot plants though the basis for this response remains unclear. In addition, the spatial structure and the role of these highly conserved proteins are not known.Results: We predict a 3d-structure for the beta-rich section of the NLPs based on alignments, prediction tools and molecular dynamics. We calculated a consensus sequence from 42 NLPs proteins, predicted its secondary structure and obtained a high quality alignment of this structure and conserved residues with the two Cupin superfamily motifs. The conserved sequence GHRHDWE and several common residues, especially some conserved histidines, in NLPs match closely the two cupin motifs. Besides other common residues shared by dicot Auxin-Binding Proteins (ABPs) and NLPs, an additional conserved histidine found in all dicot ABPs was also found in all NLPs at the same position.Conclusion: We propose that the necrosis inducing protein class belongs to the Cupin superfamily. Based on the 3d-structure, we are proposing some possible functions for the NLPs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

NAPc2, an anticoagulant protein from the hematophagous nematode Ancylostoma caninum evaluated in phase-II/IIa clinical trials, inhibits the extrinsic blood coagulation pathway by a two step mechanism, initially interacting with the hitherto uncharacterized factor Xa exosite involved in macromolecular recognition and subsequently inhibiting factor VIIa (K-i = 8.4 pM) of the factor VIIa/tissue factor complex. NAPc2 is highly flexible, becoming partially ordered and undergoing significant structural changes in the C terminus upon binding to the factor Xa exosite. In the crystal structure of the ternary factor Xa/NAPc2/selectide complex, the binding interface consists of an intermolecular antiparallel beta-sheet formed by the segment of the polypeptide chain consisting of residues 74-80 of NAPc2 with the residues 86-93 of factor Xa that is additional maintained by contacts between the short helical segment (residues 67-73) and a turn (residues 26-29) of NAPc2 with the short C-terminal helix of factor Xa (residues 233-243). This exosite is physiologically highly relevant for the recognition and inhibition of factor X/Xa by macromolecular substrates and provides a structural motif for the development of a new class of inhibitors for the treatment of deep vein thrombosis and angioplasty. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Convulxin (CVX), a C-type lectin, isolated from the venom of the South American rattlesnake Crotalus durissus terrificus, causes cardiovascular and respiratory disturbances and is a potent platelet activator which hinds to platelet glycoprotein GPVI. The structure of CVX has been solved at 2.4 Angstrom resolution to a crystallographic residual of 18.6% (R-free =26.4%). CVX is a disulfide linked heterodimer consisting of homologous alpha and beta chains. The heterodimers are additionally linked by disulfide bridges to form cyclic alpha(4)beta(4)heterotetramers. These domains exhibit significant homology to the carbohydrate-binding domains of C-type lectins, to the factor IX-binding protein (IX-bp), and to flavocetin-A (Fl-A) but sequence and Structural differences are observed in both the domains in the putative Ca2+ and carbohydrate binding regions. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The protein C pathway plays an important role in the control and regulation of the blood coagulation cascade and prevents the propagation of the clotting process on the endothelium surface. In physiological systems, protein C activation is catalyzed by thrombin, which requires thrombomodulin as a cofactor. The protein C activator from Agkistrodon contortrix contortrix acts directly on the zymogen of protein C converting it into the active form, independently of thrombomodulin. Suitable crystals of the protein C activator from Agkistrodon contortrix contortrix were obtained from a solution containing 2 M ammonium sulfate as the precipitant and these crystals diffracted to 1.95 angstrom resolution at a synchrotron beamline. The crystalline array belongs to the monoclinic space group C2 with unit cell dimensions a=80.4, b = 63.3 and c = 48.2 angstrom, alpha = gamma = 90.0 degrees and beta = 90.8 degrees. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Milk serum proteins such as alpha-lactalbumin (ALA) and beta-lactoglobulin (BLG) present biochemical polymorphism which is under the control of codominant autosomal alleles. In the present report, we propose modifications of traditional electrophoretic techniques such as increasing the running gel concentration from 5 to 10% and the addition of 5 M urea to the stacking gel, which permitted the detection of two variants (A and B) at the ALA and BLG loci. About 8 mul of milk serum (6 mg/ml protein) and 10 pl of total fresh milk were applied. Bovine serum albumin (BSA) and immunolactoglobulins (ILG) could also be discriminated. Total fresh milk was as useful as the purified serum milk proteins for the discrimination of ALA and BLG serum milk protein polymorphism by alkaline vertical slab polyacrylamide gel electrophoresis. However, BSA and ILG ran with caseins, which prevented their characterization in this system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glucose-induced insulin secretion rom and Ca-45 uptake by isolated pancreatic islets, derived from rats fed with normal (NPD) or low protein diet (LPD), were studied. Insulin secretion from both types of islets in response to increasing concentrations of glucose followed an S-shaped pattern. However, basal secretion observed at substimulatory concentrations of glucose (0-5.6 mM), as well as maximal release, obtained at 16.7 mM or higher glucose concentrations were significantly reduced in islets from LPD. Furthermore, in LPD rat islets, the dose-response curve to glucose was clearly shifted to the right compared with NPD islets, with the half-maximal response occurring at 8.5 and 14.4 mM glucose for NPD and LPD islets, respectively. In islets from NPD rats, the Ca-45 content, after 5 or 90 min in the presence of 8.3 mM glucose, was higher than that observed for islets kept at 2.8 mM glucose and increased further at 16.7 mM glucose. After 5 min of incubation, the Ca-45 uptake by LPD islets in the presence of 8.3 mM glucose was slightly higher than basal values (2.8 mM glucose); however, no further increase in the Ca-45 uptake was noticed at 16.7 mM glucose. In LPD islets a significant increase in Ca-45 uptake over basal values was registered only at 16.7 mM glucose, after 90 min of incubation. These data indicate that the poor secretary response to glucose observed in islets from LPD rats may be related to a defect in the ability of glucose to increase Ca2+ uptake and/or to reduce Ca2+ efflux from beta-cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Barley plants (cultivars Embrapa 127, 128 and 129) treated with xanthan gum, and with different time intervals between the administration of the inducer and the pathogen, demonstrated induction of resistance against Bipolaris sorokiniana. Induction was shown to have local and systemic action. In order to prove the resistance effect, biochemical analyses were performed to quantify proteins and the enzymatic activity of beta-1,3 glucanase. Results demonstrated that barley plants treated with the inducer, showed an increase in the concentration of proteins, as well as in the activity of the enzyme beta-1,3 glucanase, when compared with the extract from healthy plants. In infected plants, protein concentrations decreased and enzymatic activity was lower than in healthy plants. Results suggest that barley plants treated with xanthan gum developed mechanisms responsible for induced resistance, which are still unknown. The most important macromolecule in the defense mechanism was demonstrated to be PR-protein, due to its accumulation and concentration of proteins. However, it may not be the only macromolecule responsible for the resistance effect. (C) 2004 Elsevier SAS. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hookworms are hematophagous nematodes capable of growth, development and subsistence in living host systems such as humans and other mammals. Approximately one billion, or one in six, people worldwide are infected by hookworms causing gastrointestinal blood loss and iron deficiency anemia. The hematophagous hookworm Ancylostoma caninum produces a family of small, disulfide-linked protein anticoagulants (75-84 amino acid residues). One of these nematode anticoagulant proteins, NAP5, inhibits the amidolytic activity of factor Xa (fXa) with K-i = 43 pM, and is the most potent natural fXa inhibitor identified thus far. The crystal structure of NAP5 bound at the active site of gamma-carboxyglutamic acid domainless factor Xa (des-fXa) has been determined at 3.1 angstrom resolution, which indicates that Asp189 (fXa, S1 subsite) binds to Arg40 (NAP5, P1 site) in a mode similar to that of the BPTI/trypsin interaction. However, the hydroxyl group of Ser39 of NAP5 additionally forms a hydrogen bond (2.5 angstrom) with His57 NE2 of the catalytic triad, replacing the hydrogen bond of Ser195 OG to the latter in the native structure, resulting in an interaction that has not been observed before. Furthermore, the C-terminal extension of NAP5 surprisingly interacts with the fXa exosite of a symmetry-equivalent molecule forming a short intermolecular beta-strand as observed in the structure of the NAPc2/fXa complex. This indicates that NAP5 can bind to fXa at the active site, or the exosite, and to fX at the exosite. However, unlike NAPc2, NAP5 does not inhibit fVIIa of the fVIIa/TF complex. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Matrix metalloprotease-13 (MMP-13) or collagenase-3 is involved in a number of pathologic processes such as tumor metastasis and angiogenesis, osteoarthritis, rheumatoid arthritis and periodontal diseases. These conditions are associated with extensive degradation of both connective tissue and bone. This report examines gene regulation mechanisms and signal transduction pathways involved in Mmp-13 expression induced by proinflammatory cytokines in periodontal ligament (PDL) fibroblasts. Mmp-13 mRNA expression was increased 10.7 and 9.5 fold after stimulation with IL-1 beta (5 ng/mL) and TNF-alpha (10 ng/mL), respectively. However, inhibition of p38 MAPKinase with SB203580 resulted in significant (p < 0.001) induction (23.2 and 18.1 fold, respectively) of Mmp-13 mRNA as assessed by real time PCR. Negative regulation of IL-1 induced Mmp-13 expression was confirmed by inhibiting p38 MAPK gene expression with siRNA. Transient transfection of dominant negative forms of MKK3 and MKK6 also resulted in increased levels of Mmp-13 mRNA after IL-1 beta stimulation. Mmp-13 mRNA expression induced by TNF-alpha was decreased by JNK and ERK inhibition. Western blot and zymogram analysis indicated that Mmp-13 protein expression induced by the proinflammatory cytokines were also upregulated by inhibition of p38 MAPK. Reporter gene experiments using stable cell lines harboring 660-bp sequence of the murine Mmp-13 proximal promoter indicated that transcriptional mechanisms were at least partially involved in this negative regulation of Mmp-13 expression by p38 MAPK and upstream MKK3/6. These results suggest a negative transcriptional regulatory mechanism mediated by p38 MAPK and upstream MKK3/6 on Mmp-13 expression induced by proinflammatory cytokines in PDL fibroblasts. (c) 2005 Elsevier B.V./International Society of Matrix Biology. All rights reserved.