1000 resultados para Air-sideICAO - ENAC
Resumo:
This paper describes a study that used video materials and visits to an airport to prepare children on the autism spectrum for travel by plane. Twenty parents and carers took part in the study with children aged from 3 to 16 years. The authors explain that the methods they used were based on Applied Behaviour Analysis (ABA) research; a video modeling technique called Point-Of-View Video-priming and during visits to an airport they used procedures known as Natural Environment Teaching. The findings suggest that using video and preparing children by taking them through what is likely to happen in the real environment when they travel by plane is effective and the authors suggest these strategies could be used to support children with autism with other experiences they need or would like to engage in such as visits to the dentist or hairdressers and access to leisure centres and other public spaces.
Resumo:
A microcosm system was developed to investigate transfers of organic xenobiotics in air-soil-plant systems. This was validated using 14C labelled 1,2-dichlorobenzene (DCB) as a model compound. Trapping efficiency was 106 ± 3% for volatile compounds and 93.0 ± 2.2% for carbon dioxide in a blank microcosm arrangement. Recovery of 1,2-dichlorobenzene spiked to grassed and unplanted soils was > 90% after 1 week. The predominant DCB loss process was volatilisation with no evidence for mineralisation over 1 week and 20-30% of the added spike remained in soil. Although there was no evidence for root uptake and translocation of added label, foliar uptake of soil volatilised compound was detected. The microcosm showed good potential for study of 14C labelled and unlabelled organic xenobiotic transfers in air-soil-plant systems with single plants and also intact planted cores.
Resumo:
The purpose of this study is to determine the influence of inclining the heat exchanger relative to the fan in a forced draught air-cooled heat exchanger. Since inclination increases plenum depth, the effect of inclination is also compared with increasing plenum depth without inclination. The experimental study shows that inclination improves thermal performance by only 0.5%, when compared with a baseline non-inclined case with a shallow plenum. Similarly, increasing plenum depth without inclination has a thermal performance benefit of approximately 1%. The numerical study shows that, as the heat exchanger is inclined, the low velocity core at the centre of the heat exchanger moves to one side.
Resumo:
This paper describes large scale tests conducted on a novel unglazed solar air collector system. The proposed system, referred to as a back-pass solar collector (BPSC), has on-site installation and aesthetic advantages over conventional unglazed transpired solar collectors (UTSC) as it is fully integrated within a standard insulated wall panel. This paper presents the results obtained from monitoring a BPSC wall panel over one year. Measurements of temperature, wind velocity and solar irradiance were taken at multiple air mass flow rates. It is shown that the length of the collector cavities has a direct impact on the efficiency of the system. It is also shown that beyond a height-to-flow ratio of 0.023m/m<sup>3</sup>/hr/m<sup>2</sup>, no additional heat output is obtained by increasing the collector height for the experimental setup in this study, but these numbers would obviously be different if the experimental setup or test environment (e.g. location and climate) change. An equation for predicting the temperature rise of the BPSC is proposed.
Resumo:
Glazed Double Skin Facades (DSF) offer the potential to improve the performance of all-glass building skins, common to commercial office buildings in which full facade glazing has almost become the standard. Single skin glazing results in increased heating and cooling costs over opaque walls, due to lower thermal resistance of glass, and the increased impact of solar gain through it. However, the performance benefit of DSF technology continues to be questioned and its operation poorly understood, particularly the nature of airflow through the cavity. This paper deals specifically with the experimental analysis of the air flow characteristics in an automated double skin façade. The benefit of the DSF as a thermal buffer, and to limit overheating is evaluated through analysis of an extensive set of parameters including air and surface temperatures at each level in the DSF, airflow readings in the cavity and at the inlet and outlet, solar and wind data, and analytically derived pressure differentials. The temperature and air-flow are monitored in the cavity of a DSF using wireless sensors and hot wire anemometers respectively. Automated louvre operation and building set-points are monitored via the BMS. Thermal stratification and air flow variation during changing weather conditions are shown to effect the performance of the DSF considerably and hence the energy performance of the building. The relative pressure effects due to buoyancy and wind are analysed and quantified. This research aims to developed and validate models of DSFs in the maritime climate, using multi-season data from experimental monitoring. This extensive experimental study provides data for training and validation of models.
Resumo:
This paper reports on the accuracy of new test methods developed to measure the air and water permeability of high-performance concretes (HPCs). Five representative HPC and one normal concrete (NC) mixtures were tested to estimate both repeatability and reliability of the proposed methods. Repeatability acceptance was adjudged using values of signal-noise ratio (SNR) and discrimination ratio (DR), and reliability was investigated by comparing against standard laboratory-based test methods (i.e., the RILEM gas permeability test and BS EN water penetration test). With SNR and DR values satisfying recommended criteria, it was concluded that test repeatability error has no significant influence on results. In addition, the research confirmed strong positive relationships between the proposed test methods and existing standard permeability assessment techniques. Based on these findings, the proposed test methods show strong potential to become recognized as international methods for determining the permeability of HPCs.
Resumo:
Background: Excessive activation of epithelial sodium channels (ENaC) contributes to CF lung pathophysiology due to the resultant dehydration of the airway surface liquid (ASL) and impaired mucociliary clearance. Regulated proteolysis of the endogenous α and γ subunits of ENaC by apical membrane-bound Channel Activating Proteases (CAPs) is a fundamental regulatory mechanism for channel activity. In the CF lung a stark imbalance between the levels of CAPs and their natural inhibitors drives the activation of normally inactive ENaC. On this basis inhibition of CAPs-ENaC signalling represents a potential therapeutic intervention. To this end we have developed a novel cell impermeable active-site directed compound (QUB-TL1) designed to inactivate key trypsin-like CAPs highly relevant in this regard. Objectives & Methods: Utilize differentiated non-CF and CF human airway epithelial cells to assess the impact of QUB-TL1 on a range of parameters including surface CAP activities, ENaC subunit processing/channel activity, ASL height and mucociliary clearance. Results: Treatment of airway epithelial cells with QUB-TL1 results in the significant downregulation of key endogenous CAP activities found to be excessively active at the surface of CF cultures. QUB-TL1-mediated CAP inhibition subsequently causes the internalisation of a pool of processed (active) ENaCγ prominent at the apical surface of CF cultures which correlates with a decline in channel activity. This downregulation of ENaC activity results in an increase in ASL height and improved mucociliary clearance in CF cells. We further find QUB-TL1 uniquely inhibits the ENaC activating enzyme furin, which is in contrast to the alternate trypsin-like CAP inhibitors camostat mesylate and aprotinin. QUB-TL1-mediated furin inhibition correlates with a reduction in neutrophil elastase-induced ENaC activation. Moreover we find QUB-TL1 treatment protects CF cultures from Pseudomonas aeruginosa exotoxin A-induced cytotoxicity. Pseudomonas aeruginosa exotoxin A is a major toxic product activated by furin and positively associated with mortality. Conclusion: The novel inhibitor (QUB-TL1) dampens CAPs-ENaC signalling which improves hydration status mucociliary clearance in CF airway epithelial cell cultures. Moreover this compound provides additional benefit by preventing Pseudomonas aeruginosa exotoxin A-induced cytotoxicity.
Resumo:
This paper reports on the solubility and diffusivity of dissolved oxygen in a series of ionic liquids (ILs) based on the bis{(trifluoromethyl)sulfonyl}imide anion with a range of related alkyl and ether functionalised cyclic alkylammonium cations. Cyclic voltammetry has been used to observe the reduction of oxygen in ILs at a microdisk electrode and chronoamperometric measurements have then been applied to simultaneously determine both the concentration and the diffusion coefficient of oxygen in the different ILs. The viscosity of the ILs and the calculated molar volume and free volume is also reported. It is found that, within this class of ILs, the oxygen diffusivity generally increases with decreasing viscosity of the neat IL. An inverse relationship between oxygen solubility and IL free volume is reported for the two IL families implying oxygen is not simply occupying the available empty space. In addition, it is reported that the introduction of ether-group into the IL cation structure promotes the diffusivity of dissolved oxygen but reduces the solubility of the gas.
Resumo:
Rationale: In cystic fibrosis (CF) a reduction in airway surface liquid (ASL) height
compromises mucociliary clearance, favoring mucus plugging and chronic bacterial infection. Inhibitors of ENaC have therapeutic potential in CF airways to reduce the hyperstimulated sodium and fluid absorption to levels which can restore airways hydration.
Objectives: To determine whether a novel compound (QUB-TL1) designed to inhibit protease/ENaC signaling in CF airways restores ASL volume and mucociliary function.
Methods: Protease activity was measured using fluorogenic activity assays. Differentiated primary airway epithelial cell cultures (F508del homozygotes) were used to determined ENaC activity (Ussing chamber recordings), ASL height (confocal microscopy) and mucociliary function (by tracking the surface flow of apically applied microbeads). Cell toxicity was measured by LDH assay.
Measurements and Results: QUB-TL1 inhibits extracellularly-located CAPs, including prostasin, matriptase and furin, the activities of which are observed at excessive levels at the apical surface of CF airway epithelial cells (AECs). QUB-TL1-mediated CAPs inhibition results in diminished ENaC-mediated Na+ absorption in CF AECs due to internalization of a prominent pool of cleaved (active) ENaCγ from the cell surface. Importantly, diminished ENaC activity correlates with improved airway hydration status and mucociliary clearance. We further demonstrate QUB-TL1-mediated furin inhibition, which is in contrast to other serine protease inhibitors (camostat mesylate and aprotinin), affords protection against neutrophil elastase-mediated ENaC activation and Pseudomonas aeruginosa exotoxin A induced cell death.
Conclusions: QUB-TL1 corrects aberrant CAP activities providing a mechanism to delay or prevent the development of CF lung disease in a manner independent of CFTR mutation.
Resumo:
There is a significant lack of indoor air quality research in low energy homes. This study compared the indoor air quality of eight
newly built case study homes constructed to similar levels of air-tightness and insulation; with two different ventilation strategies (four homes with Mechanical Ventilation with Heat Recovery (MVHR) systems/Code level 4 and four homes naturally ventilated/Code level 3). Indoor air quality measurements were conducted over a 24 h period in the living room and main bedroom of each home during the summer and winter seasons. Simultaneous outside measurements and an occupant diary were also employed during the measurement period. Occupant interviews were conducted to gain information on perceived indoor air quality, occupant behaviour and building related illnesses. Knowledge of the MVHR system including ventilation related behaviour was also studied. Results suggest indoor air quality problems in both the mechanically ventilated and naturally ventilated homes, with significant issues identified regarding occupant use in the social homes