983 resultados para Air Diffusion Layer
Resumo:
Oxygen and carbon isotope compositions of well-preserved mammoth teeth from the Middle Wurmian (40-70 ka) peat layer of Niederweningen, the most important mammoth site in Switzerland, were analysed to reconstruct Late Pleistocene palaeoclimatic and palaeoenvironmental conditions. Drinking water (delta(18)O values of approximately -12.3 +/- 0.9 parts per thousand were calculated front oxygen isotope compositions of mammoth tooth enamel apatite using a species-specific calibration for modern elephants. These delta(18)O(H2O) values reflect the mean oxygen isotope composition of the palaeo-precipitation and are similar to those directly measured for fate Pleistocene groundwater from aquifers in northern Switzerland and southern Germany. Using a present-day delta(18)O(H2)o-precipitation-air temperature relation for Switzerland, a mean annual air temperature (MAT) of around 4.3 +/- 2.1 degrees C can be calculated for the Middle Wurmian at this site. This MAT is in good agreement with palaeotemperature estimates on the basis of Middle Wurmian groundwater recharge temperatures and beetle assemblages. Hence, the climatic conditions in this region were around 4 degrees C cooler during the Middle Wurmian interstadial phase, around 45-50ka BP, than they are today. During this period the mammoths from Niederweningen lived in an open tundra-like, C(3) plant-dominated environment as indicated by enamel (delta(13)C values of -11.5 +/- 0.3 parts per thousand and pollen and macroplant fossils found in the embedding peat. The low variability of enamel delta(13)C and delta(18)O values from different mammoth teeth reflects similar environmental conditions and supports a relatively small time frame for the fossil assemblage. (C) 2006 Elsevier Ltd and INQUA. All rights reserved.
Resumo:
We investigate the hypothesis that the atmosphere is constrained to maximize its entropy production by using a one-dimensional (1-D) vertical model. We prescribe the lapse rate in the convective layer as that of the standard troposphere. The assumption that convection sustains a critical lapse rate was absent in previous studies, which focused on the vertical distribution of climatic variables, since such a convective adjustment reduces the degrees of freedom of the system and may prevent the application of the maximum entropy production (MEP) principle. This is not the case in the radiative–convective model (RCM) developed here, since we accept a discontinuity of temperatures at the surface similar to that adopted in many RCMs. For current conditions, the MEP state gives a difference between the ground temperature and the air temperature at the surface ≈10 K. In comparison, conventional RCMs obtain a discontinuity ≈2 K only. However, the surface boundary layer velocity in the MEP state appears reasonable (≈3 m s-¹). Moreover, although the convective flux at the surface in MEP states is almost uniform in optically thick atmospheres, it reaches a maximum value for an optical thickness similar to current conditions. This additional result may support the maximum convection hypothesis suggested by Paltridge (1978)
Resumo:
The endodermis represents the main barrier to extracellular diffusion in plant roots, and it is central to current models of plant nutrient uptake. Despite this, little is known about the genes setting up this endodermal barrier. In this study, we report the identification and characterization of a strong barrier mutant, schengen3 (sgn3). We observe a surprising ability of the mutant to maintain nutrient homeostasis, but demonstrate a major defect in maintaining sufficient levels of the macronutrient potassium. We show that SGN3/GASSHO1 is a receptor-like kinase that is necessary for localizing CASPARIAN STRIP DOMAIN PROTEINS (CASPs)--major players of endodermal differentiation--into an uninterrupted, ring-like domain. SGN3 appears to localize into a broader band, embedding growing CASP microdomains. The discovery of SGN3 strongly advances our ability to interrogate mechanisms of plant nutrient homeostasis and provides a novel actor for localized microdomain formation at the endodermal plasma membrane.
Resumo:
Quantification of short-echo time proton magnetic resonance spectroscopy results in >18 metabolite concentrations (neurochemical profile). Their quantification accuracy depends on the assessment of the contribution of macromolecule (MM) resonances, previously experimentally achieved by exploiting the several fold difference in T(1). To minimize effects of heterogeneities in metabolites T(1), the aim of the study was to assess MM signal contributions by combining inversion recovery (IR) and diffusion-weighted proton spectroscopy at high-magnetic field (14.1 T) and short echo time (= 8 msec) in the rat brain. IR combined with diffusion weighting experiments (with δ/Δ = 1.5/200 msec and b-value = 11.8 msec/μm(2)) showed that the metabolite nulled spectrum (inversion time = 740 msec) was affected by residuals attributed to creatine, inositol, taurine, choline, N-acetylaspartate as well as glutamine and glutamate. While the metabolite residuals were significantly attenuated by 50%, the MM signals were almost not affected (< 8%). The combination of metabolite-nulled IR spectra with diffusion weighting allows a specific characterization of MM resonances with minimal metabolite signal contributions and is expected to lead to a more precise quantification of the neurochemical profile.
Resumo:
An epidemic model is formulated by a reactionâeuro"diffusion system where the spatial pattern formation is driven by cross-diffusion. The reaction terms describe the local dynamics of susceptible and infected species, whereas the diffusion terms account for the spatial distribution dynamics. For both self-diffusion and cross-diffusion, nonlinear constitutive assumptions are suggested. To simulate the pattern formation two finite volume formulations are proposed, which employ a conservative and a non-conservative discretization, respectively. An efficient simulation is obtained by a fully adaptive multiresolution strategy. Numerical examples illustrate the impact of the cross-diffusion on the pattern formation.
Resumo:
Asbestos is an industrial term to describe some fibrous silicate minerals, which belong to the amphiboles or serpentines group. Six minerals are defined as asbestos including: chrysotile (white asbestos), amosite (grunerite, brown asbestos), crocidolite (riebeckite, blue asbestos), anthophyllite, tremolite and actonolite, but only in their fibrous form. In 1973, the IARC (International Agency for Research on Cancer) classified the asbestos minerals as carcinogenic substances (IARC,1973). The Swiss threshold limit (VME) is 0.01 fibre/ml (SUVA, 2007). Asbestos in Switzerland has been prohibited since 1990, but this doesn't mean we are over asbestos. Up to 20'000 tonnes/year of asbestos was imported between the end of WWII and 1990. Today, all this asbestos is still present in buildings renovated or built during that period of time. During restorations, asbestos fibres can be emitted into the air. The quantification of the emission has to be evaluated accurately. To define the exact risk on workers or on the population is quite hard, as many factors must be considered. The methods to detect asbestos in the air or in materials are still being discussed today. Even though the EPA 600 method (EPA, 1993) has proved itself for the analysis of bulk materials, the method for air analysis is more problematic. In Switzerland, the recommended method is VDI 3492 using a scanning electron microscopy (SEM), but we have encountered many identifications problems with this method. For instance, overloaded filters or long-term exposed filters cannot be analysed. This is why the Institute for Work and Health (IST) has adapted the ISO10312 method: ambient air - determination of asbestos fibres - direct-transfer transmission electron microscopy (TEM) method (ISO, 1995). Quality controls have already be done at a French institute (INRS), which validate our practical experiences. The direct-transfer from MEC's filters on TEM's supports (grids) is a delicate part of the preparation for analysis and requires a lot of trials in the laboratory. IST managed to do proper grid preparations after about two years of development. In addition to the preparation of samples, the micro-analysis (EDX), the micro-diffraction and the morphologic analysis (figure 1.a-c) are also to be mastered. Theses are the three elements, which prove the different features of asbestos identification. The SEM isn't able to associate those three analyses. The TEM is also able to make the difference between artificial and natural fibres that have very similar chemical compositions as well as differentiate types of asbestos. Finally the experiments concluded by IST show that TEM is the best method to quantify and identify asbestos in the air.