885 resultados para Agroindustrial by-product
Resumo:
The electrooxidation of vitamin D-2 (VD2) was studied by cyclic voltammetry and in situ circular dichroic (CD) spectroelectrochemistry for the first time, The mechanism of electrooxidation and some useful kinetic and adsorption parameters were obtained. The results showed that the oxidation of VD2 in ethanol solution is an irreversible diffusion controlled process following a weak adsorption of the electroinactive product at a glassy carbon electrode, which blocks the electrochemical reaction. The electrooxidation occurs mainly at the triene moieties of the VD2 molecule. The CD spectroelectrochemical data were treated by the double logarithm method together with nonlinear regression, from which the formal potential E-0 = 1.08 V, alphan = 0.245, the standard electrochemical rate constant k(0) = 4.30( +/- 0.58) x 10(-4) cm s(-1) and the adsorption constant beta = 1.77(+/- 0.25) were obtained. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
All structural geometries of intermediates, transition states and product are, optimized at HF/ LANL2DZ level under the effective core potential approximation. The potential energy profile for some elementary reactions of hydroformylation catalyzed by Co-2(CO)(6)(PH3)(2), consisting of carbonyl insertion, H-2 oxidative addition and aldehyde reductive elimination, are calculated, The transition states are further confirmed by having one and only one imaginary vibrational frequency, The activation energies of carbonyl insertion, H-2 oxidative addition and aldehyde reductive elimination are 54, 02, 134, 02 and 43. 44 kJ/mol, respectively.
Resumo:
The electroxidation of ergosterol was studied by in situ circular dichroic (CD) spectroelectrochemistry with a long optical path length thin layer cell. It was confirmed that the oxidation of ergosterol in ethanol solution is a two-electron irreversible electrochemical process with strong adsorption of an electroinactive product at the glassy carbon electrode, which blocks the electrochemical reaction. The CD spectroelectrochemical data were treated by the double logarithm method together with nonlinear regression, from which the formal potential, E-0 = 1.00 V, alpha n(alpha) = 0.302, the standard electrochemical rate constant, k(0) = 6.1(+/-0.4) x 10(-4) cm s(-1) and the adsorption constant, beta = 19 +/- 1, were obtained. The number of electrons transferred (n = 1.86) was estimated by cyclic voltammetry.
Resumo:
The electrode reaction process of ascorbic (Vc) was studied by in-situ circular dichroic(CD) spectroelectrochemistry with a long optical path thin layer cell on glassy carbon(GC) electrode. The spectroelectrochemical data were analyzed by the double logarithmic method together with nonlinear regression. The results suggested that the mechanism of Ve in pH 7.0 phosphate buffer solution at GC electrode was a two-electron irreversible electrooxidation followed by adsorption of the oxidation product. That is a self-accelerated process. Some kinetic parameters at free and at adsorbed electrode surface, i.e, the formal potentials, E-0' = 0.09 V, E-a(0') = 0.26 +/- 0.02 V; the electron transfer coefficient and number of transfered electron, alpha n = 0.41, alpha(a)n = 0.07;the standard heterogeneous electron transfer rate constant, k(0) = 8.0 x 10(-5) cm.s(-1), k(a)(0) = 1.9 x 10(-4) cm.s(-1) and adsorption constant, beta = 102.6 were also estimated.
Resumo:
A new photochromic bisphenoxynaphthacenequinone compound, 6,6'-[1-methylethylidenebis (4,1-phenyleneoxy)]bis (5,12-naphthacenequinone) (1), was synthesized by a two-step method, i.e., synthesis of 6-[4-(2-(4-hydroxyphenyl)isopropyl) phenoxy]-5, 12-naphthacenequinone (2) from 6-chloro-5, 12-naphthacenequinone (3) and bisphenol-A, and a further reaction of compound 2 in DMF/acetone mixed solvent in the presence of anhydrous potassium carbonate and potassium iodide. The crude product is obtained in a precipitate form and can easily be purified by recrystallization. The solvent composition has marked influence on the yield of the precipitated crude product in the second step.
Resumo:
The ion-molecule reactions in acetone were investigated which were induced under the chemical ionization. The structural information of the reaction products were obtained by using collision-induced dissociation (CID) technique performed at ion kinetic energies of 30eV.
Resumo:
The extraction equilibria of Sc(III), Zr(IV), Ti(IV), Th(IV), Fe(III) and Lu(III) from sulphuric or hydrochloric acid media by Cyanex 923 (mixture of straight chain alkylated phosphine oxides) and Cyanex 925 (mixture of branched chain alkylated phosphine oxides) were studied at various aqueous acidities. The extractant Cyanex 923 demonstrated better scandium loading and selectivity for TI(IV). Fe(III) and Lu(III) than Cyanex 925. The effects of extractant concentration on the extractions of sulphuric acid and Sc(III) by Cyanex 923 were examined. The stoichiometries of the extraction reactions were postulated based on slope analysis. The experimental results indicate that Cyanex 923 can be employed to recover scandium directly from the hydrolytic mother solution arising from TiO2 production via the sulphate process. The parameters studied were scandium loading capacity, phase ratio, concentrations of Ti(IV) scrubbing and Sc(III) stripping agents. A new solvent extraction technology of scandium recovery was developed. The purity of the final Sc(III) product is above 95% with a yield > 94%. (C) 1998 Elsevier Science B.V.
Resumo:
An integrated CaF2 crystal optically transparent infrared (ir) thin-layer cell was designed and constructed without using any soluble adhesive materials. It is suitable for both aqueous and nonaqueous systems, and can be used not only in ir but also in uv-vis studies. Excellent electrochemical and spectroelectrochemical responses were obtained in evaluating this cell by cyclic voltammetry and steady-state potential step measurements for both ir and uv-vis spectrolectrochemistry with ferri/ferrocyanide in aqueous solution, and with ferrocene/ferrocenium in organic solvent as the testing species, respectively. The newly designed ir cell was applied to investigate the electrochemical reduction process of bilirubin in situ, which provided direct information for identifying the structure of the reduction product and proposing the reaction mechanism.
Resumo:
The electrochemical redox behavior of bilirubin (BR IValpha), biliverdin (BV IValpha) and their oxidized product bile-purpurin (Bi-Pu) have been studied by in situ spectroelectrochemical techniques, which reveals that the transformation of BR IValpha [GRA
Resumo:
Sixteen polycyclic aromatic hydrocarbons (PAHs) and 28 polychlorinated biphenyls (PCBs) were measured at a 2-cm interval in a core sample from the middle of the southern Yellow Sea for elucidating their historical variations in inflow and sources. The chronology was obtained using the Pb-210 method. PAHs concentrations decreased generally with depth and two climax values occurred in 14-16 cm and 20-22 cm layers, demonstrating that the production and usage of PAHs might reach peaks in the periods of 1956-1962 and 1938-1944. The booming economy and the navy battles of the Second World War might explain why the higher levels were detected in the two layers. The result of principal component analysis (PCA) revealed that PAHs were primarily owing to the combustion product. Down-cored variation of PCB concentrations was complex. Higher concentrations besides the two peaks being the same as PAHs were detected from 4 to 8 cm, depositing from 1980 to 1992, which probably resulted from the disposal of the out-dated PCB-containing equipment. The average Cl percentage of PCBs detected was similar to that of the mixture of Aroclor 1254 and 1242, suggesting they might origin from the dielectrical and heat-transfer fluid. The total organic carbon (TOC) content played a prevalent role in the adsorption of high molecular weight PAHs (>= 4-ring), while no obvious relationship among total PCBs, the concentration of congeners, and TOC was found.
Resumo:
A pre-column derivatization method for the sensitive determination of amines using the labeling reagent 1,2-benzo-3,4-dihydrocarbazole-9-isopropyl chloroformate (BCIC-Cl) followed by high-performance liquid chromatography with fluorescence detection has been developed. Identification of derivatives is carried out by high performance liquid chromatography/atmospheric pressure chemical ionization (LC-APCl-MS-MS). The chromophore of 2-(9-carbazole)-ethyl chloroformate (CEOC) reagent is replaced by 1,2-benzo-3,4-dihydrocarbazole-9-isopropyl functional group, which results in a sensitive fluorescence derivatizing reagent BCIC-Cl. BCIC-Cl can easily and quickly label amines. Derivatives are stable enough to be efficiently analyzed by high-performance liquid chromatography and show an intense protonated molecular ion corresponding m/z [MH](+) under APCl in positive-ion mode. The collision-induced dissociation of protonated molecular ion formed a product at m/z 260 corresponding to the cleavage of CH2-OCO bond. Studies on derivatization demonstrate excellent derivative yields over the pH 9.0-10.0. Maximal yields close to 100% are observed with a 3 to 4-fold molar reagent excess. In addition, the detection responses for BCIC derivatives are compared with those obtained using CEOC and FMOC as derivatization reagents. The ratios of l(BCIC)/l(CEOC) and l(BCIC)/l(FMOC) are, respectively, 1.23-3.14 and 1.25-3.08 for fluorescent (FL) responses (here, l is relative fluorescence intensity). Separation of the derivatized amines had been optimized on reversed-phase Eclipse XDB-C-8 column. Detection limits are calculated from 1.0 pmol injection, at a signal-to-noise ratio of 3, are 10.6-37.8 fmol. The mean interday accuracy ranges from 94 to 105% for fluorescence detection with the largest mean %CV < 7.5. The mean interday precision for all standards is < 6.0% of the expected concentration. Excellent linear responses are observed with coefficients of > 0.9997.
Resumo:
A rapid capillary electrophoresis method for the separation of five natural pharmacologically active compounds from extracted Rhodiola, namely salidroside, tyrosol, rhodionin, gallic acid and ethyl gallate has been developed. The separation of five natural pharmacologically active compounds was carried out in a fused-silica capillary with 14 mM boric acid, 30 mM SDS and 2.5% acetonitrile, adjusted to pH 10.7 with NaOH. Applied potential was 21 kV. The temperature of the capillary was maintained at 25 degreesC by the instrument thermostating system, with the correlation coefficients of 0.9805-0.9989 for migration time, and relative standards of < 3.52% for peak areas. The established method is rapid and reproducible for the separation of five natural pharmacologically compounds from extracts of Rhodiola with satisfactory results.
Resumo:
Magnesium nitride (Mg3N2) was synthesized by the reaction of magnesium in the highly reactive form (Mg*) with nitrogen at 450 degrees C under normal pressure. The effect of doping with nickel dichloride on the nitridation of Mg* was investigated. Differential thermal analysis (DTA) of Mg* systems and transmission electron microscopy (TEM) measurement of the product formed were carried out. TEM measurement showed that the particle size of the Mg3N2 synthesized was in the nanometric range. The dependence of nitridation of the NiCl2-doped Mg* on temperature was investigated at temperatures ranging from 300 to 500 degrees C. The nitridation of NiCl2-doped Mg* could occur even at temperature as low as 300 degrees C. (C) 1999 Kluwer Academic Publishers.
Resumo:
The lower alkene production by the gas-phase oxidative cracking (GOC) or catalytic oxidative cracking (COC) of hexane (C6) with added syngas was investigated. The addition of syngas to the COC process could effectively enhance the selectivity to lower alkenes and decrease the selectivity to COx, because of the preferential reaction between O-2 with H-2 contained in the syngas, whereas it has little effect on the conversion of C6 and product distribution in the GOC process. The high selectivity to lower alkenes of 70% and low selectivity to CO, of 6% at C6 conversion of 66% were achieved over 0.1% Pt/MgAl2O4 catalyst. The COC process of C6 combined with the syngas in the feed could directly produce a gas mixture of lower alkenes, H-2, and CO, which usually is a suitable feedstock for the hydroformylation process.
Resumo:
The extract of Adinandra nitida leaves, named as Shiyacha in China, was studied by high performance liquid chromatography (HPLC)-ultraviolet detection-electrospray ionisation (ESI) tandem mass spectrometry (MS). Under the optimized condition, the analysis could be finished in 45 min on a Hypersil C18 column combined with negative ion detection using information-dependent acquisition (IDA) mode of a Q TRAP (TM) instrument. Six flavonoids were identified as epicatechin, rhoifolin, apigenin, quercitrin, camellianin A, and camellianin B among which rhoifolin was for the first time found in Shiyacha. And the fragment pathways of these flavonoids were elucidated. Furthermore, with epicatechin, rhoifolin, and apigenin as markers, the quality control method for Shiyacha and its relevant product was firstly established. Calibration linearity was good (R-2 > 0.9992) over a three to four orders of magnitude concentration range with an S/N = 3 detection limit of 2.5 ng. (c) 2004 Elsevier B.V. All rights reserved.