973 resultados para Advanved very high resolution radiometer (AVHRR)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on a high-resolution analysis of the diatom signal and biogenic bulk components at site GeoB3606-1 (25°S, off Namibia), we describe rapid palaeoceanographic changes in the Benguela Upwelling System (BUS) from early MIS 3 through to the early Holocene (55 000 to 7 000 14C yr BP). Coastal upwelling strongly varied at 25°S from MIS 3 through to MIS 2. The abrupt decrease in the accumulation rate of biogenic silica and diatoms from MIS 3 into MIS 2 records rapid oceanographic changes in the BUS off Namibia. During MIS 3, leakage of excess H4SiO4 acid from the Southern Ocean into low-latitude surface waters, as indicated by the occurrence of Antarctic diatoms, enhanced the production of spores of Chaetoceros at the expense of calcareous phytoplankton. Furthermore, shallower Antarctic Intermediate Water (AAIW) would have enriched the thermocline off Namibia with silicate transported from the Southern Ocean. The strong decrease of the siliceous signal throughout MIS 2 represents a decrease in the nutrient input to the BUS, even though the diatom assemblage is still dominated by spores of the upwelling-associated diatom genus Chaetoceros. Depletion of silicate in the thermocline from the onset of MIS 2 through to the early Holocene reflects the shutdown of AAIW injection from the Southern Ocean into the BUS, causing upwelled waters to become reduced in silicate, hence less favourable for diatom production. The deglaciation and early Holocene are characterised by the replacement of the upwelling-associated flora by a non-upwelling-related diatom community, reflecting weakened upwelling, retraction of the seaward extension of the chlorophyll filament off Lüderitz, and dominance of warmer waters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Narrow-spaced oxygen and carbon stable isotope records of the planktonic foraminifer Globigerinoides ruber (white) were obtained at Ocean Drilling Program Leg 184 Site 1144 to establish a first record of high-resolution Pleistocene monsoon variability on orbital to centennial timescales in the northern South China Sea. The new records extend from the Holocene back to marine isotope Stage (MIS) 34 (1.1 Ma). Sedimentation rates average 0.56 m/k.y. for the upper Matuyama and Brunhes Chrons and increase to 1.8 m/k.y. over the last 100 k.y. Stable isotope records thus reach an average time resolution of 270-500 yr for the last 375 k.y. and 570 yr further back to 700 ka. On the other hand, major stratigraphic gaps were identified for peak warm Stages 5.5, 7.5 (down to 8.4), 11.3, and 15.5. These gaps probably resulted from short-lasting events of contour current erosion induced by short-term enhanced incursions of Upper Pacific Deep Water near the end of glacial terminations. A further major hiatus extends from MIS 34 to MIS 73(?). The long-term variations in monsoon climate were largely dominated by the 100-k.y. eccentricity cycle. Planktonic delta13C values culminated near 30, 480, and 1035 ka and reflect an overlying 450-k.y. eccentricity cycle of minimum nutrient concentrations in the surface ocean. Superimposed on the orbital variations, millennial-scale cycles were prominent throughout the last 700 k.y., mainly controlled by short-term changes in monsoon-driven precipitation and freshwater input from mainland China. During the last 110 k.y. these short-lasting oscillations closely match the record of 1500-yr Dansgaard-Oeschger climate cycles in the Greenland ice core record.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to its strong influence on heat and moisture exchange between the ocean and the atmosphere, sea ice is an essential component of the global climate system. In the context of its alarming decrease in terms of concentration, thickness and duration, understanding the processes controlling sea-ice variability and reconstructing paleo-sea-ice extent in polar regions have become of great interest for the scientific community. In this study, for the first time, IP25, a recently developed biomarker sea-ice proxy, was used for a high-resolution reconstruction of the sea-ice extent and its variability in the western North Pacific and western Bering Sea during the past 18,000 years. To identify mechanisms controlling the sea-ice variability, IP25 data were associated with published sea-surface temperature as well as diatom and biogenic opal data. The results indicate that a seasonal sea-ice cover existed during cold periods (Heinrich Stadial 1 and Younger Dryas), whereas during warmer intervals (Bølling-Allerød and Holocene) reduced sea ice or ice-free conditions prevailed in the study area. The variability in sea-ice extent seems to be linked to climate anomalies and sea-level changes controlling the oceanographic circulation between the subarctic Pacific and the Bering Sea, especially the Alaskan Stream injection though the Aleutian passes.