989 resultados para Adaptive mesh refinements
Resumo:
Privacy region protection in video surveillance systems is an active topic at present. In previous research, a binary mask mechanism has been developed to indicate the privacy region; however this incurs a significant bitrate overhead. In this paper, an adaptive binary mask is proposed to represent the privacy region. In a practical privacy region protection application, in which the privacy region typically occupies less than half of the overall frame and is rectangular or approximately rectangular, the proposed adaptive binary mask can effectively reduce the bitrate overhead. The proposed method can also be easily applied to the FMO mechanism of H.264/AVC, providing both error resilience and a lower bitrate overhead.
Resumo:
Streptococcus pyogenes is the causative agent of numerous diseases ranging from benign infections (pharyngitis and impetigo) to severe infections associated with high mortality (necrotizing fasciitis and bacterial sepsis). As with other bacterial infections, there is considerable interest in characterizing the contribution of interleukin-17A (IL-17A) responses to protective immunity. We here show significant il17a up-regulation by quantitative real-time PCR in secondary lymphoid organs, correlating with increased protein levels in the serum within a short time of S. pyogenes infection. However, our data offer an important caveat to studies of IL-17A responsiveness following antigen inoculation, because enhanced levels of IL-17A were also detected in the serum of sham-infected mice, indicating that inoculation trauma alone can stimulate the production of this cytokine. This highlights the potency and speed of innate IL-17A immune responses after inoculation and the importance of proper and appropriate controls in comparative analysis of immune responses observed during microbial infection.
Resumo:
Fixed and wireless networks are increasingly converging towards common connectivity with IP-based core networks. Providing effective end-to-end resource and QoS management in such complex heterogeneous converged network scenarios requires unified, adaptive and scalable solutions to integrate and co-ordinate diverse QoS mechanisms of different access technologies with IP-based QoS. Policy-Based Network Management (PBNM) is one approach that could be employed to address this challenge. Hence, a policy-based framework for end-to-end QoS management in converged networks, CNQF (Converged Networks QoS Management Framework) has been proposed within our project. In this paper, the CNQF architecture, a Java implementation of its prototype and experimental validation of key elements are discussed. We then present a fuzzy-based CNQF resource management approach and study the performance of our implementation with real traffic flows on an experimental testbed. The results demonstrate the efficacy of our resource-adaptive approach for practical PBNM systems
Resumo:
Integrating analysis and design models is a complex task due to differences between the models and the architectures of the toolsets used to create them. This complexity is increased with the use of many different tools for specific tasks during an analysis process. In this work various design and analysis models are linked throughout the design lifecycle, allowing them to be moved between packages in a way not currently available. Three technologies named Cellular Modeling, Virtual Topology and Equivalencing are combined to demonstrate how different finite element meshes generated on abstract analysis geometries can be linked to their original geometry. Establishing the equivalence relationships between models enables analysts to utilize multiple packages for specialist tasks without worrying about compatibility issues or rework.
Resumo:
A novel tubular cell structure for a direct methanol fuel cell (DMFC) is proposed based on a tubular Ti mesh and a Ti mesh anode. A dip coating method has been developed to fabricate the cell. The characterization of the tubular MEA has been analyzed by scanning electron microscopy (SEM), energy dispersive X-ray (EDX), half cell and single cell testing. The tubular DMFC single cell comprises: a Ti mesh, a cathode diffusion layer and catalyst layer, a Nafion recast membrane and a PtRuO/Ti anode. Half cell tests show that the optimum catalyst loading, Ru/(Ru + Pt) atomic ratio and the Nafion loading of a PtRuO/Ti mesh anode are: 4 mg cm, 38% and 0.6 mg cm, respectively. Single cell tests show that the Nafion loading of the recast Nafion membrane and the concentration of the methanol in the electrolyte have a major influence on cell performance. © 2006 Elsevier B.V. All rights reserved.
Resumo:
A novel anode structure based on Ti mesh for the direct methanol fuel cell (DMFC) has been prepared by thermal deposition of ~5 µm PtRuO2 catalyst layer on ~50 µm Ti mesh. The preparation procedures and the main characteristics of the anode were studied by half-cell testing, scanning electron microscopy analysis, energy-dispersive X-ray measurement, and single-cell testing. The optimum calcination temperature is 450°C, calcination time is 90- 120 min, PtRuO2 catalyst loading is 5.0 mg cm-2, Pt precursor concentration range of solution is 0.14- 0.4 M, and solution aging time is 1 day. The performances of the anodes prepared using the solution kept within 20 days showed no significant difference. When it was used in DMFC feed with low-concentration methanol solution at 90°C, this new anode shows better performance than that of the conventional anode, because its thin hydrophilic structure is a benefit to the transport of methanol and carbon dioxide. However, due to its opening structure, when higher concentration methanol was employed, the performance of the cell with new anode became worse. © 2006 The Electrochemical Society. All rights reserved.
Resumo:
An anode structure based on Ti mesh has been developed for the direct methanol fuel cell (DMFC). This new anode was prepared by electrochemical deposition of a ~ 3 µ m PtRu catalyst layer on ~ 50 µ m Ti mesh. It has a thinner structure compared to that of a porous carbon-based conventional anode. The Ti mesh anode shows a performance comparable to, and exceeding that, of the conventional anode in a DMFC operating with 0.25 or 0.5 M methanol solution and atmosphere oxygen at 90 C. However, it shows a lower performance of the cell when higher concentrations of methanol was employed. This may be attributed to its thin and open structure, which could facilitate the transport of methanol from the flow field to the anode catalyst layer and carbon dioxide in the opposite direction. © 2006 International Association for Hydrogen Energy.
Resumo:
We compare the achievable performance of adaptive beamforming (A-BF) and adaptive orthogonal space time block coding (A-OSTBC) with outdated channel feedback. We extend our single user setup to multiuser diversity systems employing adaptive modulation, and illustrate the impact of feedback delay on the multiuser diversity gain with either A-OSTBC or A-BF. Using closed-form expressions for spectral efficiency and average BER of a multiuser diversity system derived in this paper, we prove that the A-BF scheme outperforms the A-OSTBC scheme with no feedback delay. However, when the feedback delay is large, the A-OSTBC scheme achieves better performance due to the reduced diversity advantage of A-BF. We observe that more transmit antennas bring higher spectral efficiency for BF. With small feedback delay, this becomes inverted using OSTBC, due to the effect of channel-hardening. Interestingly, however, we show that A-OSTBC with multiple users enjoys improved spectral efficiency when the number of transmit antennas is increased and the feedback delay is significant
Resumo:
Abstract-Channel state information (CSI) at the transmitter can be used to adapt transmission rate or antenna gains in multi-antenna systems. We propose a rate-adaptive M-QAM scheme equipped with orthogonal space-time block coding with simple outdated, finite-rate feedback over independent flat fading channels. We obtain closed-form expressions for the average BER and throughput for our scheme, and analyze the effects of possibly delayed feedback on the performance gains. We derive optimal switching thresholds maximizing the average throughput under average and outage BER constraints with outdated feedback. Our numerical results illustrate the immunity of our optimal thresholds to delayed feedback.