926 resultados para Adaptive learning, Sticky information, Inflation dynamics, Nonlinearities
Resumo:
Learning Disability (LD) is a general term that describes specific kinds of learning problems. It is a neurological condition that affects a child's brain and impairs his ability to carry out one or many specific tasks. The learning disabled children are neither slow nor mentally retarded. This disorder can make it problematic for a child to learn as quickly or in the same way as some child who isn't affected by a learning disability. An affected child can have normal or above average intelligence. They may have difficulty paying attention, with reading or letter recognition, or with mathematics. It does not mean that children who have learning disabilities are less intelligent. In fact, many children who have learning disabilities are more intelligent than an average child. Learning disabilities vary from child to child. One child with LD may not have the same kind of learning problems as another child with LD. There is no cure for learning disabilities and they are life-long. However, children with LD can be high achievers and can be taught ways to get around the learning disability. In this research work, data mining using machine learning techniques are used to analyze the symptoms of LD, establish interrelationships between them and evaluate the relative importance of these symptoms. To increase the diagnostic accuracy of learning disability prediction, a knowledge based tool based on statistical machine learning or data mining techniques, with high accuracy,according to the knowledge obtained from the clinical information, is proposed. The basic idea of the developed knowledge based tool is to increase the accuracy of the learning disability assessment and reduce the time used for the same. Different statistical machine learning techniques in data mining are used in the study. Identifying the important parameters of LD prediction using the data mining techniques, identifying the hidden relationship between the symptoms of LD and estimating the relative significance of each symptoms of LD are also the parts of the objectives of this research work. The developed tool has many advantages compared to the traditional methods of using check lists in determination of learning disabilities. For improving the performance of various classifiers, we developed some preprocessing methods for the LD prediction system. A new system based on fuzzy and rough set models are also developed for LD prediction. Here also the importance of pre-processing is studied. A Graphical User Interface (GUI) is designed for developing an integrated knowledge based tool for prediction of LD as well as its degree. The designed tool stores the details of the children in the student database and retrieves their LD report as and when required. The present study undoubtedly proves the effectiveness of the tool developed based on various machine learning techniques. It also identifies the important parameters of LD and accurately predicts the learning disability in school age children. This thesis makes several major contributions in technical, general and social areas. The results are found very beneficial to the parents, teachers and the institutions. They are able to diagnose the child’s problem at an early stage and can go for the proper treatments/counseling at the correct time so as to avoid the academic and social losses.
Resumo:
In the present thesis entitled” Implications of Hydrobiology and Nutrient dynamics on Trophic structure and Interactions in Cochin backwaters”, an attempt has been made to assess the influence of general hydrography, nutrients and other environmental factors on the abundance, distribution and trophic interactions in Cochin backwater system. The study was based on five seasonal sampling campaigns carried out at 15 stations spread along the Cochin backwater system. The thesis is presented in the following 5 chapters. Salient features of each chapter are summarized below: Chapter 1- General Introduction: Provides information on the topic of study, environmental factors, back ground information, the significance, review of literature, aim and scope of the present study and its objectives.Chapter 2- Materials and Methods: This chapter deals with the description of the study area and the methodology adopted for sample collection and analysis. Chapter 3- General Hydrograhy and Sediment Characteristics: Describes the environmental setting of the study area explaining seasonal variation in physicochemical parameters of water column and sediment characteristics. Data on hydrographical parameters, nitrogen fractionation, phosphorus fractionation and biochemical composition of the sediment samples were assessed to evaluate the trophic status. Chapter 4- Nutrient Dynamics on Trophic Structure and Interactions: Describes primary, secondary and tertiary production in Cochin backwater system. Primary production related to cell abundance, diversity of phytoplankton that varies seasonally, concentration of various pigments and primary productivitySecondary production refers to the seasonal abundance of zooplankton especially copepod abundance and tertiary production deals with seasonal fish landings, gut content analysis and proximate composition of dominant fish species. The spatiotemporal variation, interrelationships and trophic interactions were evaluated by statistical methods. Chapter 5- Summary: The results and findings of the study are summarized in the fifth chapter of the thesis.
Resumo:
The dynamics and associated stability analysis of tidal inlets situated on the southwest coast of India, namely Andhakaranazhi (90 45 J OO JJN and 760 17 J 29 JJ E) and the other at Cochin harbour inlet (90 58 1 04 J1N and 760 14 1 50 1J E) have beenconducted. A detailed study on the inlet regime of Cochin barmouth (permanent in nature) was attempted so as to elucidate information on: (a) channel characteristics (b) tidal hydraulics and (c) stability of the inlet. In this connection, a naturally occurring seasonal sandbar formation at Andhakaranazhi, near Sherthallay, about 20 km south of Cochin inlet, was also chosen as a site ofstudy brought out conclusively the dynamical study. The aspects of ( 1) tidal influx/out flux (2) channel morphology (3) sedimentation regime and (4) stability and factors related to stability of these locations. The above aspects are supported by suitable mathematical formulations to describe the associated coastal processes, wherever applicable
Resumo:
This thesis investigates the potential use of zerocrossing information for speech sample estimation. It provides 21 new method tn) estimate speech samples using composite zerocrossings. A simple linear interpolation technique is developed for this purpose. By using this method the A/D converter can be avoided in a speech coder. The newly proposed zerocrossing sampling theory is supported with results of computer simulations using real speech data. The thesis also presents two methods for voiced/ unvoiced classification. One of these methods is based on a distance measure which is a function of short time zerocrossing rate and short time energy of the signal. The other one is based on the attractor dimension and entropy of the signal. Among these two methods the first one is simple and reguires only very few computations compared to the other. This method is used imtea later chapter to design an enhanced Adaptive Transform Coder. The later part of the thesis addresses a few problems in Adaptive Transform Coding and presents an improved ATC. Transform coefficient with maximum amplitude is considered as ‘side information’. This. enables more accurate tfiiz assignment enui step—size computation. A new bit reassignment scheme is also introduced in this work. Finally, sum ATC which applies switching between luiscrete Cosine Transform and Discrete Walsh-Hadamard Transform for voiced and unvoiced speech segments respectively is presented. Simulation results are provided to show the improved performance of the coder
Resumo:
In Wireless Sensor Networks (WSN), neglecting the effects of varying channel quality can lead to an unnecessary wastage of precious battery resources and in turn can result in the rapid depletion of sensor energy and the partitioning of the network. Fairness is a critical issue when accessing a shared wireless channel and fair scheduling must be employed to provide the proper flow of information in a WSN. In this paper, we develop a channel adaptive MAC protocol with a traffic-aware dynamic power management algorithm for efficient packet scheduling and queuing in a sensor network, with time varying characteristics of the wireless channel also taken into consideration. The proposed protocol calculates a combined weight value based on the channel state and link quality. Then transmission is allowed only for those nodes with weights greater than a minimum quality threshold and nodes attempting to access the wireless medium with a low weight will be allowed to transmit only when their weight becomes high. This results in many poor quality nodes being deprived of transmission for a considerable amount of time. To avoid the buffer overflow and to achieve fairness for the poor quality nodes, we design a Load prediction algorithm. We also design a traffic aware dynamic power management scheme to minimize the energy consumption by continuously turning off the radio interface of all the unnecessary nodes that are not included in the routing path. By Simulation results, we show that our proposed protocol achieves a higher throughput and fairness besides reducing the delay
Resumo:
The aim of the study was to investigate the relevance of e—learning in continuing education of library professionals in the universities in Kerala. /55 part of a survey of library professionals in the seven major Universities in Kerala to find their continuing education needs, it was found that majority of the library professionals attend continuing education programmes (CEP) to be trained in the latest technologies. Internet resources were the preferred mode of information source by 38.9 per cent of the library professionals. The importance of continuing education in developing the competencies of library professionals is also stressed
Resumo:
The development of computer and network technology is changing the education scenario and transforming the teaching and learning process from the traditional physical environment to the digital environment. It is now possible to access vast amount of information online and enable one to one communication without the confines of place or time. While E-learning and teaching is unlikely to replace face-to-face training and education it is becoming an additional delivery method, providing new learning opportunities to many users. It is also causing an impact on library services as the increased use of ICT and web based learning technologies have paved the way for providing new ICT based services and resources to the users. Online learning has a crucial role in user education, information literacy programmes and in training the library professionals. It can help students become active learners, and libraries will have to play a greater role in this process of transformation. The significance of libraries within an institution has improved due to the fact that academic libraries and information services are now responsible for e-learning within their organization.
Resumo:
This paper highlights the prediction of learning disabilities (LD) in school-age children using rough set theory (RST) with an emphasis on application of data mining. In rough sets, data analysis start from a data table called an information system, which contains data about objects of interest, characterized in terms of attributes. These attributes consist of the properties of learning disabilities. By finding the relationship between these attributes, the redundant attributes can be eliminated and core attributes determined. Also, rule mining is performed in rough sets using the algorithm LEM1. The prediction of LD is accurately done by using Rosetta, the rough set tool kit for analysis of data. The result obtained from this study is compared with the output of a similar study conducted by us using Support Vector Machine (SVM) with Sequential Minimal Optimisation (SMO) algorithm. It is found that, using the concepts of reduct and global covering, we can easily predict the learning disabilities in children
Resumo:
This paper highlights the prediction of Learning Disabilities (LD) in school-age children using two classification methods, Support Vector Machine (SVM) and Decision Tree (DT), with an emphasis on applications of data mining. About 10% of children enrolled in school have a learning disability. Learning disability prediction in school age children is a very complicated task because it tends to be identified in elementary school where there is no one sign to be identified. By using any of the two classification methods, SVM and DT, we can easily and accurately predict LD in any child. Also, we can determine the merits and demerits of these two classifiers and the best one can be selected for the use in the relevant field. In this study, Sequential Minimal Optimization (SMO) algorithm is used in performing SVM and J48 algorithm is used in constructing decision trees.
Resumo:
Learning disability (LD) is a neurological condition that affects a child’s brain and impairs his ability to carry out one or many specific tasks. LD affects about 10% of children enrolled in schools. There is no cure for learning disabilities and they are lifelong. The problems of children with specific learning disabilities have been a cause of concern to parents and teachers for some time. Just as there are many different types of LDs, there are a variety of tests that may be done to pinpoint the problem The information gained from an evaluation is crucial for finding out how the parents and the school authorities can provide the best possible learning environment for child. This paper proposes a new approach in artificial neural network (ANN) for identifying LD in children at early stages so as to solve the problems faced by them and to get the benefits to the students, their parents and school authorities. In this study, we propose a closest fit algorithm data preprocessing with ANN classification to handle missing attribute values. This algorithm imputes the missing values in the preprocessing stage. Ignoring of missing attribute values is a common trend in all classifying algorithms. But, in this paper, we use an algorithm in a systematic approach for classification, which gives a satisfactory result in the prediction of LD. It acts as a tool for predicting the LD accurately, and good information of the child is made available to the concerned
Resumo:
Learning Disability (LD) is a neurological condition that affects a child’s brain and impairs his ability to carry out one or many specific tasks. LD affects about 15 % of children enrolled in schools. The prediction of LD is a vital and intricate job. The aim of this paper is to design an effective and powerful tool, using the two intelligent methods viz., Artificial Neural Network and Adaptive Neuro-Fuzzy Inference System, for measuring the percentage of LD that affected in school-age children. In this study, we are proposing some soft computing methods in data preprocessing for improving the accuracy of the tool as well as the classifier. The data preprocessing is performed through Principal Component Analysis for attribute reduction and closest fit algorithm is used for imputing missing values. The main idea in developing the LD prediction tool is not only to predict the LD present in children but also to measure its percentage along with its class like low or minor or major. The system is implemented in Mathworks Software MatLab 7.10. The results obtained from this study have illustrated that the designed prediction system or tool is capable of measuring the LD effectively
Resumo:
Super Resolution problem is an inverse problem and refers to the process of producing a High resolution (HR) image, making use of one or more Low Resolution (LR) observations. It includes up sampling the image, thereby, increasing the maximum spatial frequency and removing degradations that arise during the image capture namely aliasing and blurring. The work presented in this thesis is based on learning based single image super-resolution. In learning based super-resolution algorithms, a training set or database of available HR images are used to construct the HR image of an image captured using a LR camera. In the training set, images are stored as patches or coefficients of feature representations like wavelet transform, DCT, etc. Single frame image super-resolution can be used in applications where database of HR images are available. The advantage of this method is that by skilfully creating a database of suitable training images, one can improve the quality of the super-resolved image. A new super resolution method based on wavelet transform is developed and it is better than conventional wavelet transform based methods and standard interpolation methods. Super-resolution techniques based on skewed anisotropic transform called directionlet transform are developed to convert a low resolution image which is of small size into a high resolution image of large size. Super-resolution algorithm not only increases the size, but also reduces the degradations occurred during the process of capturing image. This method outperforms the standard interpolation methods and the wavelet methods, both visually and in terms of SNR values. Artifacts like aliasing and ringing effects are also eliminated in this method. The super-resolution methods are implemented using, both critically sampled and over sampled directionlets. The conventional directionlet transform is computationally complex. Hence lifting scheme is used for implementation of directionlets. The new single image super-resolution method based on lifting scheme reduces computational complexity and thereby reduces computation time. The quality of the super resolved image depends on the type of wavelet basis used. A study is conducted to find the effect of different wavelets on the single image super-resolution method. Finally this new method implemented on grey images is extended to colour images and noisy images
Resumo:
Available information on abundance of myctophids and their utilisation indicate that there is excellent scope for development of myctophid fisheries in Indian Ocean. Most of the conventional fish stocks have reached a state of full exploitation or over-exploitation. Hence there is need to locate new and conventional fishery resources in order to fill in the supply-demand gap, in the face of increasing demand for fish. Information on length-weight relationship, age and growth, spawning season, fecundity and age at maturity and information on bycatch discards are required for sustainable utilization of myctophid resource in the Indian Ocean
Resumo:
Real-time studies of the dynamics were performed on the reaction of HgI_2 in a molecular beam. Excitation was by either one or multi pump photons (311 nm), leading to two separate sets of dynamics, each of which could be investigated by a time-delayed probe laser (622 nm) that ionized the parent molecule and the fragments by REMPI processes. These dynamics were distinguished by combining the information from transients taken at each mass (HgI_2, HgI, I_2, Hg, and I) with the results of pump (and probe) power dependence studies on each mass. A method of plotting the slope of the intensity dependence against the pump-probe time delay proved essential. In the preceding publication, we detailed the dynamics of the reaction initiated by a one photon excitation to the A-continuum. Here, we present studies of higher-energy states. Multiphoton excitation accesses predissociative states of HgI_2, for which there are crossings into the symmetric and asymmetric stretch coordinates. The dynamics of these channels, which lead to atomic (I or Hg) and diatomic (HgI) fragments, are discussed and related to the nature of the intermediates along the reaction pathway.
Resumo:
Topics in education are changing with an ever faster pace. E-Learning resources tend to be more and more decentralised. Users need increasingly to be able to use the resources of the web. For this, they should have tools for finding and organizing information in a decentral way. In this, paper, we show how an ontology-based tool suite allows to make the most of the resources available on the web.