987 resultados para Actin-bindende Proteine


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Centronuclear myopathy (CNM) is a genetically heterogeneous disorder associated with general skeletal muscle weakness, type I fiber predominance and atrophy, and abnormally centralized nuclei. Autosomal dominant CNM is due to mutations in the large GTPase dynamin 2 (DNM2), a mechanochemical enzyme regulating cytoskeleton and membrane trafficking in cells. To date, 40 families with CNM-related DNM2 mutations have been described, and here we report 60 additional families encompassing a broad genotypic and phenotypic spectrum. In total, 18 different mutations are reported in 100 families and our cohort harbors nine known and four new mutations, including the first splice-site mutation. Genotype-phenotype correlation hypotheses are drawn from the published and new data, and allow an efficient screening strategy for molecular diagnosis. In addition to CNM, dissimilar DNM2 mutations are associated with Charcot-Marie-Tooth (CMT) peripheral neuropathy (CMTD1B and CMT2M), suggesting a tissue-specific impact of the mutations. In this study, we discuss the possible clinical overlap of CNM and CMT, and the biological significance of the respective mutations based on the known functions of dynamin 2 and its protein structure. Defects in membrane trafficking due to DNM2 mutations potentially represent a common pathological mechanism in CNM and CMT. Hum Mutat 33: 949-959, 2012. (C) 2012 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The prediction of tumor behavior for patients with oral carcinomas remains a challenge for clinicians. The presence of lymph node metastasis is the most important prognostic factor but it is limited in predicting local relapse or survival. This highlights the need for identifying biomarkers that may effectively contribute to prediction of recurrence and tumor spread. In this study, we used one-and two-dimensional gel electrophoresis, mass spectrometry and immunodetection methods to analyze protein expression in oral squamous cell carcinomas. Using a refinement for classifying oral carcinomas in regard to prognosis, we analyzed small but lymph node metastasis-positive versus large, lymph node metastasis-negative tumors in order to contribute to the molecular characterization of subgroups with risk of dissemination. Specific protein patterns favoring metastasis were observed in the "more-aggressive'' group defined by the present study. This group displayed upregulation of proteins involved in migration, adhesion, angiogenesis, cell cycle regulation, anti-apoptosis and epithelial to mesenchymal transition, whereas the "less-aggressive'' group was engaged in keratinocyte differentiation, epidermis development, inflammation and immune response. Besides the identification of several proteins not yet described as deregulated in oral carcinomas, the present study demonstrated for the first time the role of cofilin-1 in modulating cell invasion in oral carcinomas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background The thymus is a central lymphoid organ, in which bone marrow-derived T cell precursors undergo a complex process of maturation. Developing thymocytes interact with thymic microenvironment in a defined spatial order. A component of thymic microenvironment, the thymic epithelial cells, is crucial for the maturation of T-lymphocytes through cell-cell contact, cell matrix interactions and secretory of cytokines/chemokines. There is evidence that extracellular matrix molecules play a fundamental role in guiding differentiating thymocytes in both cortical and medullary regions of the thymic lobules. The interaction between the integrin α5β1 (CD49e/CD29; VLA-5) and fibronectin is relevant for thymocyte adhesion and migration within the thymic tissue. Our previous results have shown that adhesion of thymocytes to cultured TEC line is enhanced in the presence of fibronectin, and can be blocked with anti-VLA-5 antibody. Results Herein, we studied the role of CD49e expressed by the human thymic epithelium. For this purpose we knocked down the CD49e by means of RNA interference. This procedure resulted in the modulation of more than 100 genes, some of them coding for other proteins also involved in adhesion of thymocytes; others related to signaling pathways triggered after integrin activation, or even involved in the control of F-actin stress fiber formation. Functionally, we demonstrated that disruption of VLA-5 in human TEC by CD49e-siRNA-induced gene knockdown decreased the ability of TEC to promote thymocyte adhesion. Such a decrease comprised all CD4/CD8-defined thymocyte subsets. Conclusion Conceptually, our findings unravel the complexity of gene regulation, as regards key genes involved in the heterocellular cell adhesion between developing thymocytes and the major component of the thymic microenvironment, an interaction that is a mandatory event for proper intrathymic T cell differentiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background Rhodium (II) citrate (Rh2(H2cit)4) has significant antitumor, cytotoxic, and cytostatic activity on Ehrlich ascite tumor. Although toxic to normal cells, its lower toxicity when compared to carboxylate analogues of rhodium (II) indicates Rh2(H2cit)4 as a promising agent for chemotherapy. Nevertheless, few studies have been performed to explore this potential. Superparamagnetic particles of iron oxide (SPIOs) represent an attractive platform as carriers in drug delivery systems (DDS) because they can present greater specificity to tumor cells than normal cells. Thus, the association between Rh2(H2cit)4 and SPIOs can represent a strategy to enhance the former's therapeutic action. In this work, we report the cytotoxicity of free rhodium (II) citrate (Rh2(H2cit)4) and rhodium (II) citrate-loaded maghemite nanoparticles or magnetoliposomes, used as drug delivery systems, on both normal and carcinoma breast cell cultures. Results Treatment with free Rh2(H2cit)4 induced cytotoxicity that was dependent on dose, time, and cell line. The IC50 values showed that this effect was more intense on breast normal cells (MCF-10A) than on breast carcinoma cells (MCF-7 and 4T1). However, the treatment with 50 μM Rh2(H2cit)4-loaded maghemite nanoparticles (Magh-Rh2(H2cit)4) and Rh2(H2cit)4-loaded magnetoliposomes (Lip-Magh-Rh2(H2cit)4) induced a higher cytotoxicity on MCF-7 and 4T1 than on MCF-10A (p < 0.05). These treatments enhanced cytotoxicity up to 4.6 times. These cytotoxic effects, induced by free Rh2(H2cit)4, were evidenced by morphological alterations such as nuclear fragmentation, membrane blebbing and phosphatidylserine exposure, reduction of actin filaments, mitochondrial condensation and an increase in number of vacuoles, suggesting that Rh2(H2cit)4 induces cell death by apoptosis. Conclusions The treatment with rhodium (II) citrate-loaded maghemite nanoparticles and magnetoliposomes induced more specific cytotoxicity on breast carcinoma cells than on breast normal cells, which is the opposite of the results observed with free Rh2(H2cit)4 treatment. Thus, magnetic nanoparticles represent an attractive platform as carriers in Rh2(H2cit)4 delivery systems, since they can act preferentially in tumor cells. Therefore, these nanopaticulate systems may be explored as a potential tool for chemotherapy drug development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In mammalian species, profibrogenic cells are activated to become myofibroblasts in response to liver damage. Few studies have examined hepatic myofibroblasts and their role in liver damage in teleosts. The aim of the present study was to investigate the involvement of myofibroblast-like cells in rainbow trout (Oncorhynchus mykiss) with hepatic damage induced by aflatoxin B1 (AFB1). Histopathological and immunohistochemical analyses characterized alterations in the liver stroma during the carcinogenic process. Anti-human a-smoothmuscle actin (SMA) and anti-human desmin primary antibodies were used in immunohistochemistry. Only the anti-SMA reagent labelled cells in trout liver. In the livers of control fish, only smooth muscle in blood vessels and around bile ducts was labelled. In the livers from AFB1-treated fish, SMA-positive cells were present in the stroma surrounding neoplastic lesions and in areas of desmoplastic reaction. These observations indicate that in teleosts, as in mammals, the myofibroblast-like cell is involved in fibrosis associated with liver injury. Chronic liver injury induced in trout by aflatoxin may provide a useful model system for study of the evolution of such mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Particle tracking of microbeads attached to the cytoskeleton (CSK) reveals an intermittent dynamic. The mean squared displacement (MSD) is subdiffusive for small Δt and superdiffusive for large Δt, which are associated with periods of traps and periods of jumps respectively. The analysis of the displacements has shown a non-Gaussian behavior, what is indicative of an active motion, classifying the cells as a far from equilibrium material. Using Langevin dynamics, we reconstruct the dynamic of the CSK. The model is based on the bundles of actin filaments that link themself with the bead RGD coating, trapping it in an harmonic potential. We consider a one- dimensional motion of a particle, neglecting inertial effects (over-damped Langevin dynamics). The resultant force is decomposed in friction force, elastic force and random force, which is used as white noise representing the effect due to molecular agitation. These description until now shows a static situation where the bead performed a random walk in an elastic potential. In order to modeling the active remodeling of the CSK, we vary the equilibrium position of the potential. Inserting a motion in the well center, we change the equilibrium position linearly with time with constant velocity. The result found exhibits a MSD versus time ’tau’ with three regimes. The first regime is when ‘tau’ < ‘tau IND 0’, where ‘tau IND 0’ is the relaxation time, representing the thermal motion. At this regime the particle can diffuse freely. The second regime is a plateau, ‘tau IND 0’ < ‘tau’ < ‘tau IND 1’, representing the particle caged in the potential. Here, ‘tau IND 1’ is a characteristic time that limit the confinement period. And the third regime, ‘tau’ > ‘tau IND 1’, is when the particles are in the superdiffusive behavior. This is where most of the experiments are performed, under 20 frames per second (FPS), thus there is no experimental evidence that support the first regime. We are currently performing experiments with high frequency, up to 100 FPS, attempting to visualize this diffusive behavior. Beside the first regime, our simple model can reproduce MSD curves similar to what has been found experimentally, which can be helpful to understanding CSK structure and properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The importance of mechanical aspects related to cell activity and its environment is becoming more evident due to their influence in stem cell differentiation and in the development of diseases such as atherosclerosis. The mechanical tension homeostasis is related to normal tissue behavior and its lack may be related to the formation of cancer, which shows a higher mechanical tension. Due to the complexity of cellular activity, the application of simplified models may elucidate which factors are really essential and which have a marginal effect. The development of a systematic method to reconstruct the elements involved in the perception of mechanical aspects by the cell may accelerate substantially the validation of these models. This work proposes the development of a routine capable of reconstructing the topology of focal adhesions and the actomyosin portion of the cytoskeleton from the displacement field generated by the cell on a flexible substrate. Another way to think of this problem is to develop an algorithm to reconstruct the forces applied by the cell from the measurements of the substrate displacement, which would be characterized as an inverse problem. For these kind of problems, the Topology Optimization Method (TOM) is suitable to find a solution. TOM is consisted of an iterative application of an optimization method and an analysis method to obtain an optimal distribution of material in a fixed domain. One way to experimentally obtain the substrate displacement is through Traction Force Microscopy (TFM), which also provides the forces applied by the cell. Along with systematically generating the distributions of focal adhesion and actin-myosin for the validation of simplified models, the algorithm also represents a complementary and more phenomenological approach to TFM. As a first approximation, actin fibers and flexible substrate are represented through two-dimensional linear Finite Element Method. Actin contraction is modeled as an initial stress of the FEM elements. Focal adhesions connecting actin and substrate are represented by springs. The algorithm was applied to data obtained from experiments regarding cytoskeletal prestress and micropatterning, comparing the numerical results to the experimental ones

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cellular rheology has recently undergone a rapid development with particular attention to the cytoskeleton mechanical properties and its main components - actin filaments, intermediate filaments, microtubules and crosslinked proteins. However it is not clear what are the cellular structural changes that directly affect the cell mechanical properties. Thus, in this work, we aimed to quantify the structural rearrangement of these fibers that may emerge in changes in the cell mechanics. We created an image analysis platform to study smooth muscle cells from different arteries: aorta, mammary, renal, carotid and coronary and processed respectively 31, 29, 31, 30 and 35 cell image obtained by confocal microscopy. The platform was developed in Matlab (MathWorks) and it uses the Sobel operator to determine the actin fiber image orientation of the cell, labeled with phalloidin. The Sobel operator is used as a filter capable of calculating the pixel brightness gradient, point to point, in the image. The operator uses vertical and horizontal convolution kernels to calculate the magnitude and the angle of the pixel intensity gradient. The image analysis followed the sequence: (1) opens a given cells image set to be processed; (2) sets a fix threshold to eliminate noise, based on Otsu's method; (3) detect the fiber edges in the image using the Sobel operator; and (4) quantify the actin fiber orientation. Our first result is the probability distribution II(Δθ) to find a given fiber angle deviation (Δθ) from the main cell fiber orientation θ0. The II(Δθ) follows an exponential decay II(Δθ) = Aexp(-αΔθ) regarding to its θ0. We defined and determined a misalignment index α of the fibers of each artery kind: coronary αCo = (1.72 ‘+ or =’ 0.36)rad POT -1; renal αRe = (1.43 + or - 0.64)rad POT -1; aorta αAo = (1.42 + or - 0.43)rad POT -1; mammary αMa = (1.12 + or - 0.50)rad POT -1; and carotid αCa = (1.01 + or - 0.39)rad POT -1. The α of coronary and carotid are statistically different (p < 0.05) among all analyzed cells. We discussed our results correlating the misalignment index data with the experimental cell mechanical properties obtained by using Optical Magnetic Twisting Cytometry with the same group of cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemical agents used in cancer therapy are associated with cell cycle arrest, activation or deactivation of mechanisms associated to DNA repair and apoptosis. However, due to the complexity of biological systems, the molecular mechanisms responsible for these activities are not fully understood. Thus, studies about gene and protein expression have shown promising results for understanding the mechanisms related to cellular responses and regression of cancer after chemotherapy. This study aimed to evaluate the gene and protein expression profiling in bladder transitional cell carcinoma (TCC) with different TP53 status after gemcitabine (1.56 μM) treatment. The RT4 (grade 1, TP53 wild type), 5637 (grade 2, TP53 mutated) and T24 (grade 3, TP53 mutated) cell lines were used. PCR arrays and mass spectrometry were used to analyze gene and protein expression, respectively. Morphological alterations were observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results of PCR array showed that gemcitabine activity was mainly related to CDKN1A, GADD45A and SERTDA1 overexpression, and BAX overexpression only in the wild type TP53 cells. Mass spectrometry demonstrated that gemcitabine modulated the protein expression, especially those from genes related to apoptosis, transport of vesicles and stress response. Analyses using SEM and TEM showed changes in cell morphology independently on the cell line studied. The observed decreased number of microvillus suggests low contact among the cells and between cell and extracellular matrix; irregular forms might indicate actin cytoskeleton deregulation; and the reduction in the amount of organelles and core size might indicate reduced cellular metabolism. In conclusion, independently on TP53 status or grade of bladder tumor, gemcitabine modulated genes related to the cell cycle and apoptosis, that reflected in morphological changes indicative of future cell death.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hyperthyroidism is characterized by increased vascular relaxation and decreased vascular contraction and is associated with augmented levels of triiodothyronine (T3) that contribute to the diminished systemic vascular resistance found in this condition. T3 leads to augmented NO production via PI3K/Akt signaling pathway, which in turn causes vascular smooth muscle cell (VSMC) relaxation; however, the underlying mechanisms involved remain largely unknown. Evidence from human and animal studies demonstrates that the renin-angiotensin system (RAS) plays a crucial role in vascular function and also mediates some of cardiovascular effects found during hyperthyroidism. Thus, in this study, we hypothesized that type 2 angiotensin II receptor (AT2R), a key component of RAS vasodilatory actions, mediates T3 induced-decreased vascular contraction. Marked induction of AT2R expression was observed in aortas from T3-induced hyperthyroid rats (Hyper). These vessels showed decreased protein levels of the contractile apparatus: α-actin, calponin and phosphorylated myosin light chain (p-MLC). Vascular reactivity studies showed that denuded aortic rings from Hyper rats exhibited decreased maximal contractile response to angiotensin II (AngII), which was attenuated in aortic rings pre-incubated with an AT2R blocker. Further study showed that cultured VSMC stimulated with T3 (0.1 µmol/L) for 24 hours had increased AT2R gene and protein expression. Augmented NO levels and decreased p-MLC levels were found in VSMC stimulated with T3, both of which were reversed by a PI3K/Akt inhibitor and AT2R blocker. These findings indicate for the first time that the AT2R/Akt/NO pathway contributes to decreased contractile responses in rat aorta, promoted by T3, and this mechanism is independent from the endothelium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rationale: The excessive intake of vitamin A in the form of vitamin concentrate, supplement or vitamin-rich liver can result in hypervitaminosis A in man and animals. Although osteopathologies resulting from chronic vitamin A intoxication in cats are well characterized, no information is available concerning feline hypervitaminosis A-induced liver disease. Clinical summary: We report the first case of hepatic stellate cell lipidosis and hepatic fibrosis in a domestic cat that had been fed a diet based on raw beef liver. Radiographic examination revealed exostoses and ankylosis between vertebrae C1 and T7, compatible with deforming cervical spondylosis. Necropsy showed a slightly enlarged and light yellow to bronze liver. Microscopic and ultrastructural analyses of liver tissues revealed diffuse and severe liver fibrosis associated with hepatic stellate cell hyperplasia and hypertrophy. These cells showed immunopositive staining for α-smooth muscle actin and desmin markers. The necropsy findings of chronic liver disease coupled with osteopathology supported the diagnosis of hypervitaminosis A. Practical relevance: As in human hepatology, if there is dietary evidence to support increased intake of vitamin A, then hypervitaminosis A should be considered in the differential diagnosis of chronic liver disease in cats.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chromatin is a highly dynamic, regulatory component in the process of transcription, repair, recombination and replication. The BRG1 and SNF2H proteins are ATP-dependent chromatin remodeling proteins that modulate chromatin structure to regulate DNA accessibility for DNA-binding proteins involved in these processes. The BRG1 protein is a central ATPase of the SWI/SNF complexes involved in chromatin remodeling associated with regulation of transcription. SWI/SNF complexes are biochemically hetero-geneous but little is known about the unique functional characteristics of the various forms. We have shown that SWI/SNF activity in SW13 cells affects actin filament organization dependent on the RhoA signaling pathway. We have further shown that the biochemical composition of SWI/SNF complexes qualitatively affects the remodeling activity and that the composition of biochemically purified SWI/SNF complexes does not reflect the patterns of chromatin binding of individual subunits. Chromatin binding assays (ChIP) reveal variations among subunits believed to be constitutive, suggesting that the plasticity in SWI/SNF complex composition is greater than suspected. We have also discovered an interaction between BRG1 and the splicing factor Prp8, linking SWI/SNF activity to mRNA processing. We propose a model whereby parts of the biochemical heterogeneity is a result of function and that the local chromatin environment to which the complex is recruited affect SWI/SNF composition. We have also isolated the novel B-WICH complex that contains WSTF, SNF2H, the splicing factor SAP155, the RNA helicase II/Guα, the transcription factor Myb-binding protein 1a, the transcription factor/DNA repair protein CSB and the RNA processing factor DEK. The formation of this complex is dependent on active transcription and links chromatin remodeling by SNF2H to RNA processing. By linking chromatin remodeling complexes with RNA processing proteins our work has begun to build a bridge between chromatin and RNA, suggesting that factors in chromatin associated assemblies translocate onto the growing nascent RNA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Il superavvolgimento del DNA nelle cellule, regolato dalle DNA Topoisomerasi, influenza molti processi biologici, quali la trascrizione, la replicazione, la ricombinazione ed il rimodellamento della cromatina. La DNA Topoisomerasi IB eucariotica, (Top1), è un enzima efficiente nella rimozione dei superavvolgimenti del DNA in vitro e la sua principale funzione cellulare è la rimozione dei superavvolgimenti positivi e negativi generati durante la trascrizione e la replicazione. Risultati recenti hanno fornito evidenze sperimentali del coinvolgimento di Top1 in meccanismi multipli di regolazione dell’espressione genica eucariotica, in particolare nella fase di inizio e maturazione dei trascritti. Tuttavia, le funzioni di Top1 non sono ancora state stabilite a livello globale. Pertanto, nella presente tesi di dottorato abbiamo risposto a questa domanda con l’analisi dei profili di trascrizione genica globale e con studi di immunoprecipitazione della cromatina (ChIP) in cellule di S. cerevisiae. Circa il 9% dei geni sono influenzati da Top1, e l’analisi dei profili di espressione mostra che Top1 wt aumenta l’utilizzo del glucosio e dei pathway per la produzione di energia, con specifica diminuzione della trascrizione dei geni telomerici e subtelomerici. Abbiamo inoltre dimostrato che Top1 wt, ma non il suo mutante inattivo, aumenta la velocità di crescita cellulare nelle cellule di lievito studiate. Le analisi di ChIP mostrano che, in confronto all’assenza dell’enzima, Top1 wt diminuisce l’acetilazione dell’istone H4, compresa quella specifica della lisina 16, nel telomero destro del cromosoma XIV mentre la mutazione che inattiva l’enzima aumenta in maniera marcata l’acetilazione dell’istone H4 e la di-metilazione della lisina 4 dell’istone H3. Top1 wt incrementa anche il reclutamento di Sir3 nelle regioni di confine della cromatina silenziata dello stesso telomero. Studi di immunoprecipitazione indicano che l’enzima interagisce direttamente con la struttura della cromatina telomerica poichè entrambe le proteine, quella wt e quella inattiva, sono localizzate sulle ripetizioni telomeriche dei cromosomi di lievito. Questi risultati dimostrano che Top1, una proteina non essenziale in lievito, ottimizza i livelli globali dei trascritti per una crescita più efficiente di cellule in fase esponenziale. Indagando il meccanismo che è alla base della specifica repressione dei geni telomerici, abbiamo dimostrato che Top1 favorisce delle modifiche posttraduzionali degli istoni che indicano una struttura della cromatina repressa nelle regioni telomeriche.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Helicobacter pylori, un patogeno umano in grado di colonizzare la nicchia gastrica, è associato a patologie del tratto gastrointestinale di varia gravità. Per sopravvivere nell’ambiente ostile dello stomaco dell’ospite, e mettere in atto un’infezione persistente, il batterio si serve di una serie di fattori di virulenza che includono anche le proteine Heat Shock (chaperone). I principali geni codificanti le proteine chaperone in H. pylori sono organizzati in tre operoni trascritti dall’RNA polimerasi contenente il fattore sigma vegetativo σ80. La trascrizione di due dei tre operoni è regolata negativamente da due regolatori trascrizionali, HspR e HrcA, mentre il terzo operone è represso solo da HspR. Fino ad ora, studi molecolari per la comprensione del ruolo di ciascuna proteina nel controllo trascrizionale dei geni heat shock sono stati ostacolati dalla citotossicità ed insolubilità di HrcA quando espressa in sistemi eterologhi. In questo lavoro, è stata analizzata la sequenza amminoacidica di HrcA ed è stata confermata sperimentalmente la predizione bioinformatica della sua associazione con la membrana interna. La citotossicità e l’insolubilità di HrcA in E. coli sono state alleviate inducendone l’espressione a 42°C. Saggi in vitro con le proteine ricombinanti purificate, HspR e HrcA, hanno consentito di definire i siti di legame dei due repressori sui promotori degli operoni heat shock. Ulteriori saggi in vitro hanno suggerito che l’affinità di HrcA per gli operatori è aumentata dalla chaperonina GroESL. Questi dati contribuiscono parzialmente alla comprensione del meccanismo di repressione della trascrizione espletato da HrcA e HspR e permettono di ipotizzare il coinvolgimento di altri regolatori trascrizionali. L’analisi di RNA estratti dal ceppo selvatico e dai mutanti hrcA, hspR e hrcA/hspR di H.pylori su DNAmacroarrays non ha evidenziato il coinvolgimento di altri regolatori trascrizionali, ma ha permesso l’identificazione di un gruppo di geni indotti da HrcA e/ HspR. Questi geni sono coinvolti nella biosintesi e regolazione dell’apparato flagellare, suggerendo un’interconnessione tra la risposta heat shock e la motilità e chemiotassi del batterio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La letteratura scientifica degli ultimi anni si è arricchita di un numero sempre crescente di studi volti a chiarire i meccanismi che presiedono ai processi di homing di cellule staminali emopoietiche e del loro attecchimento a lungo termine nel midollo osseo. Tali fenomeni sembrano coinvolgere da un lato, l’interazione delle cellule staminali emopoietiche con la complessa architettura e componente cellulare midollare, e dall’altro la riposta ad un’ampia gamma di molecole regolatrici, tra le quali chemochine, citochine, molecole di adesione, enzimi proteolitici e mediatori non peptidici. Fanno parte di quest’ultimo gruppo anche i nucleotidi extracellulari, un gruppo di molecole-segnale recentemente caratterizzate come mediatori di numerose risposte biologiche, tra le quali l’allestimento di fenomeni flogistici e chemiotattici. Nel presente studio è stata investigata la capacità dei nucleotidi extracellulari ATP ed UTP di promuovere, in associazione alla chemochina CXCL12, la migrazione di cellule staminali umane CD34+. E’ così emerso che la stimolazione con UTP è in grado di incrementare significativamente la migrazione dei progenitori emopoietici in risposta al gradiente chemioattrattivo di CXCL12, nonché la loro capacità adesiva. Le analisi citofluorimetriche condotte su cellule migranti sembrano inoltre suggerire che l’UTP agisca interferendo con le dinamiche di internalizzazione del recettore CXCR4, rendendo così le cellule CD34+ maggiormente responsive, e per tempi più lunghi, al gradiente attrattivo del CXCL12. Saggi di homing competitivo in vivo hanno parallelamente mostrato, in topi NOD/SCID, che la stimolazione con UTP aumenta significativamente la capacità dei progenitori emopoeitci umani di localizzarsi a livello midollare. Sono state inoltre indagate alcune possibili vie di trasduzione del segnale attivate dalla stimolazione di recettori P2Y con UTP. Esperimenti di inibizione in presenza della tossina della Pertosse hanno evidenziato il coinvolgimento di proteine Gαi nella migrazione dipendente da CXCL12 ed UTP. Ulteriori indicazioni sono provenute dall’analisi del profilo trascrizionale di cellule staminali CD34+ stimolate con UTP, con CXCL12 o con entrambi i fattori contemporaneamente. Da questa analisi è emerso il ruolo di proteine della famiglia delle Rho GTPasi e di loro effettori a valle (ROCK 1 e ROCK 2) nel promuovere la migrazione UTP-dipendente. Questi dati sono stati confermati successivamente in vitro mediante esperimenti con Tossina B di C. Difficile (un inibitore delle Rho GTPasi) e con Y27632 (in grado di inibire specificatamente le cinasi ROCK). Nel complesso, i dati emersi in questo studio dimostrano la capacità del nucleotide extracellulare UTP di modulare la migrazione in vitro di progenitori emopoietici umani, nonché il loro homing midollare in vivo. L’effetto dell’UTP su questi fenomeni si esplica in concerto con la chemochina CXCL12, attraverso l’attivazione concertata di vie di trasduzione del segnale almeno parzialmente condivise da CXCR4 e recettori P2Y e attraverso il reclutamento comune di proteine ad attività GTPasica, tra le quali le proteine Gαi e i membri della famiglia delle Rho GTPasi.