923 resultados para Abildgaard, Peter Christian
Resumo:
AIM Transcatheter aortic valve implantation has become an alternative to surgery in higher risk patients with symptomatic aortic stenosis. The aim of the ADVANCE study was to evaluate outcomes following implantation of a self-expanding transcatheter aortic valve system in a fully monitored, multi-centre 'real-world' patient population in highly experienced centres. METHODS AND RESULTS Patients with severe aortic stenosis at a higher surgical risk in whom implantation of the CoreValve System was decided by the Heart Team were included. Endpoints were a composite of major adverse cardiovascular and cerebrovascular events (MACCE; all-cause mortality, myocardial infarction, stroke, or reintervention) and mortality at 30 days and 1 year. Endpoint-related events were independently adjudicated based on Valve Academic Research Consortium definitions. A total of 1015 patients [mean logistic EuroSCORE 19.4 ± 12.3% [median (Q1,Q3), 16.0% (10.3, 25.3%)], age 81 ± 6 years] were enrolled. Implantation of the CoreValve System led to a significant improvement in haemodynamics and an increase in the effective aortic valve orifice area. At 30 days, the MACCE rate was 8.0% (95% CI: 6.3-9.7%), all-cause mortality was 4.5% (3.2-5.8%), cardiovascular mortality was 3.4% (2.3-4.6%), and the rate of stroke was 3.0% (2.0-4.1%). The life-threatening or disabling bleeding rate was 4.0% (2.8-6.3%). The 12-month rates of MACCE, all-cause mortality, cardiovascular mortality, and stroke were 21.2% (18.4-24.1%), 17.9% (15.2-20.5%), 11.7% (9.4-14.1%), and 4.5% (2.9-6.1%), respectively. The 12-month rates of all-cause mortality were 11.1, 16.5, and 23.6% among patients with a logistic EuroSCORE ≤10%, EuroSCORE 10-20%, and EuroSCORE >20% (P< 0.05), respectively. CONCLUSION The ADVANCE study demonstrates the safety and effectiveness of the CoreValve System with low mortality and stroke rates in higher risk real-world patients with severe aortic stenosis.
Resumo:
The aim of our study was to evaluate the quality of histo- and cytomorphological features of PAXgene-fixed specimens and their suitability for histomorphological classification in comparison to standard formalin fixation. Fifteen colon cancer tissues were collected, divided into two mirrored samples and either formalin fixed (FFPE) or PAXgene fixed (PFPE) before paraffin embedding. HE- and PAS-stained sections were scanned and evaluated in a blinded, randomised ring trial by 20 pathologists from Europe and the USA using virtual microscopy. The pathologists evaluated histological grading, histological subtype, presence of adenoma, presence of lymphovascular invasion, quality of histomorphology and quality of nuclear features. Statistical analysis revealed that the reproducibility with regard to grading between both fixation methods was rather satisfactory (weighted kappa statistic (k w) = 0.73 (95 % confidence interval (CI), 0.41-0.94)), with a higher agreement between the reference evaluation and the PFPE samples (k w = 0.86 (95 % CI, 0.67-1.00)). Independent from preservation method, inter-observer reproducibility was not completely satisfactory (k w = 0.60). Histomorphological quality parameters were scored equal or better for PFPE than for FFPE samples. For example, overall quality and nuclear features, especially the detection of mitosis, were judged significantly better for PFPE cases. By contrast, significant retraction artefacts were observed more frequently in PFPE samples. In conclusion, our findings suggest that the PAXgene Tissue System leads to excellent preservation of histomorphology and nuclear features of colon cancer tissue and allows routine morphological diagnosis.
Resumo:
The phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway is frequently activated in human cancer and plays a crucial role in glioblastoma biology. We were interested in gaining further insight into the potential of targeting PI3K isoforms as a novel anti-tumor approach in glioblastoma. Consistent expression of the PI3K catalytic isoform PI3K p110α was detected in a panel of glioblastoma patient samples. In contrast, PI3K p110β expression was only rarely detected in glioblastoma patient samples. The expression of a module comprising the epidermal growth factor receptor (EGFR)/PI3K p110α/phosphorylated ribosomal S6 protein (p-S6) was correlated with shorter patient survival. Inhibition of PI3K p110α activity impaired the anchorage-dependent growth of glioblastoma cells and induced tumor regression in vivo. Inhibition of PI3K p110α or PI3K p110β also led to impaired anchorage-independent growth, a decreased migratory capacity of glioblastoma cells, and reduced the activation of the Akt/mTOR pathway. These effects were selective, because targeting of PI3K p110δ did not result in a comparable impairment of glioblastoma tumorigenic properties. Together, our data reveal that drugs targeting PI3K p110α can reduce growth in a subset of glioblastoma tumors characterized by the expression of EGFR/PI3K p110α/p-S6.
Resumo:
R. H. Charles
Resumo:
After stroke, the injured brain undergoes extensive reorganization and reconnection. Sleep may play a role in synaptic plasticity underlying stroke recovery. To test this hypothesis, we investigated topographic sleep electroencephalographic characteristics, as a measure of brain reorganization, in the acute and chronic stages after hemispheric stroke. We studied eight patients with unilateral stroke in the supply territory of the middle cerebral artery and eight matched controls. All subjects underwent a detailed clinical examination including assessment of stroke severity, sleep habits and disturbances, anxiety and depression, and high-density electroencephalogram examination with 128 electrodes during sleep. The recordings were performed within 10 days after stroke in all patients, and in six patients also 3 months later. During sleep, we found higher slow-wave and theta activity over the affected hemisphere in the infarct area in the acute and chronic stage of stroke. Slow-wave, theta activity and spindle frequency range power over the affected hemisphere were lower in comparison to the non-affected side in a peri-infarct area in the patients' group, which persisted over time. Conversely, in wakefulness, only an increase of delta, theta activity and a slowing of alpha activity over the infarct area were found. Sleep slow-wave activity correlated with stroke severity and outcome. Stroke might have differential effects on the generation of delta activity in wakefulness and sleep slow waves (1-8 Hz). Sleep electroencephalogram changes over both the affected and non-affected hemispheres reflect the acute dysfunction caused by stroke and the plastic changes underlying its recovery. Moreover, these changes correlate with stroke severity and outcome.
Resumo:
The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD.
Resumo:
Abstract BACKGROUND: The purpose of this paper is to describe the transdiaphragmatic approach to the heart for open CPR in patients that arrest at laparotomy and to present a first case series of patients that have undergone this procedure. METHODS: All patients who had undergone intraperitoneal transdiaphragmatic open CPR between January 1, 2002 and December 31, 2012 were retrieved from the operation registry at Bern University Hospital, Switzerland. Transdiaphragmatic access to the heart is initiated with a 10-cm-long anterocaudal incision in the central tendon of the diaphragm--approximately at 2 o'clock. Internal cardiac compression through the diaphragmatic incision can be performed from both sides of the patient. From the right side of the patient, cardiac massage is performed with the right hand and vice versa. RESULTS: A total of six patients were identified that suffered cardiac arrest during laparotomy with open CPR performed through the transdiaphragmatic approach. Four patients suffered cardiac arrest during orthotopic liver transplantation and two trauma patients suffered cardiac arrest during damage control laparotomy. In three patients, cardiac activity was never reestablished. However, three patients regained a perfusion heart rhythm and two of these survived to the ICU. One patient ultimately survived to discharge. CONCLUSIONS: In patients suffering cardiac arrest during laparotomy, the transdiaphragmatic approach allows for a rapid, technically easy, and almost atraumatic access to the heart, with excellent CPR performance. After this potentially life-saving procedure, pulmonary or surgical site complications are expected to occur much less compared with the conventionally performed emergency department left-sided thoracotomy.
Resumo:
BACKGROUND & AIMS: The genetic background of alcoholic liver diseases and their complications are increasingly recognized. A common polymorphism in the neurocan (NCAN) gene, which is known to be expressed in neuronal tissue, has been identified as a risk factor for non-alcoholic fatty liver disease (NAFLD). We investigated if this polymorphism may also be related to alcoholic liver disease (ALD) and hepatocellular carcinoma (HCC). METHODS: We analysed the distribution of the NCAN rs2228603 genotypes in 356 patients with alcoholic liver cirrhosis, 126 patients with alcoholic HCC, 382 persons with alcohol abuse without liver damage, 362 healthy controls and in 171 patients with hepatitis C virus (HCV) associated HCC. Furthermore, a validation cohort of 229 patients with alcoholic cirrhosis (83 with HCC) was analysed. The genotypes were determined by LightSNiP assays. The expression of NCAN was studied by RT-PCR and immunofluorescence microscopy. RESULTS: The frequency of the NCAN rs2228603 T allele was significantly increased in patients with HCC due to ALD (15.1%) compared to alcoholic cirrhosis without HCC (9.3%), alcoholic controls (7.2%), healthy controls (7.9%), and HCV associated HCC (9.1%). This finding was confirmed in the validation cohort (15.7% vs. 6.8%, OR=2.53; 95%CI: 1.36-4.68; p=0.0025) and by multivariate analysis (OR=1.840; 95%CI: 1.22-2.78; p=0.004 for carriage of the rs2228603 T allele). In addition, we identified and localised NCAN expression in human liver. CONCLUSIONS: NCAN is not only expressed in neuronal tissue, but also in the liver. Its rs2228603 polymorphism is a risk factor for HCC in ALD, but not in HCV infection.
Resumo:
Epileptic encephalopathies are a phenotypically and genetically heterogeneous group of severe epilepsies accompanied by intellectual disability and other neurodevelopmental features. Using next-generation sequencing, we identified four different de novo mutations in KCNA2, encoding the potassium channel KV1.2, in six isolated patients with epileptic encephalopathy (one mutation recurred three times independently). Four individuals presented with febrile and multiple afebrile, often focal seizure types, multifocal epileptiform discharges strongly activated by sleep, mild to moderate intellectual disability, delayed speech development and sometimes ataxia. Functional studies of the two mutations associated with this phenotype showed almost complete loss of function with a dominant-negative effect. Two further individuals presented with a different and more severe epileptic encephalopathy phenotype. They carried mutations inducing a drastic gain-of-function effect leading to permanently open channels. These results establish KCNA2 as a new gene involved in human neurodevelopmental disorders through two different mechanisms, predicting either hyperexcitability or electrical silencing of KV1.2-expressing neurons.
Resumo:
Rolandic epilepsy (RE) is the most common idiopathic focal childhood epilepsy. Its molecular basis is largely unknown and a complex genetic etiology is assumed in the majority of affected individuals. The present study tested whether six large recurrent copy number variants at 1q21, 15q11.2, 15q13.3, 16p11.2, 16p13.11 and 22q11.2 previously associated with neurodevelopmental disorders also increase risk of RE. Our association analyses revealed a significant excess of the 600 kb genomic duplication at the 16p11.2 locus (chr16: 29.5-30.1 Mb) in 393 unrelated patients with typical (n = 339) and atypical (ARE; n = 54) RE compared with the prevalence in 65,046 European population controls (5/393 cases versus 32/65,046 controls; Fisher's exact test P = 2.83 × 10(-6), odds ratio = 26.2, 95% confidence interval: 7.9-68.2). In contrast, the 16p11.2 duplication was not detected in 1738 European epilepsy patients with either temporal lobe epilepsy (n = 330) and genetic generalized epilepsies (n = 1408), suggesting a selective enrichment of the 16p11.2 duplication in idiopathic focal childhood epilepsies (Fisher's exact test P = 2.1 × 10(-4)). In a subsequent screen among children carrying the 16p11.2 600 kb rearrangement we identified three patients with RE-spectrum epilepsies in 117 duplication carriers (2.6%) but none in 202 carriers of the reciprocal deletion. Our results suggest that the 16p11.2 duplication represents a significant genetic risk factor for typical and atypical RE.