990 resultados para ANTIOXIDANT ACTIVITIES
Resumo:
Leishmaniasis, Chagas' disease and schistosomiasis (bilharzia) are parasitic diseases with wide distribution on the American continent, affecting millions of people. In the present study, biological assays for antiprotozoal and molluscicidal activities were carried out with ethanolic extracts of plant species from the Brazilian part of the Upper Paraná River. Crude extracts were obtained by percolation with absolute ethanol from the leaves of Cayaponia podantha Cogn., Nectandra falcifolia (Nees) Castiglioni and Paullinia elegans Cambess., as well as from the aerial parts of Helicteres gardneriana St. Hil. & Naud. and Melochia arenosa Benth., all belonging to genera used in folk medicine. Trypanocidal activity of plants was assayed on epimastigote cultures in liver infusion tryptose. Anti-leishmanial activity was determined over cultures of promastigote forms of the parasite in Schneider's Drosophila medium. Microscopic countings of parasites, after their incubation in the presence of different concentrations of the crude extracts, were made in order to determine the percentage of growth inhibition. C. podantha and M. arenosa, at a concentration of 10 µg/mL, showed 90.4 ± 11.52 and 88.9 ± 2.20% growth inhibition, respectively, of epimastigote forms of Trypanosoma cruzi, whereas N. falcifolia demonstrated an LD50 of 138.5 µg/mL against promastigote forms of Leishmania (Viannia) braziliensis. Regarding molluscicidal activity, the acute toxicity of the extracts on Biomphalaria glabrata was evaluated by a rapid screening procedure. M. arenosa was 100% lethal to snails at 200 µg/mL and showed an LD50 of 143 µg/mL. Screening of plant extracts represents a continuous effort to find new antiparasitic drugs.
Resumo:
The effects of H2O2 were evaluated in the estuarine worm Laeonereis acuta (Polychaeta, Nereididae) collected at the Patos Lagoon estuary (Southern Brazil) and maintained in the laboratory under controlled salinity (10 psu diluted seawater) and temperature (20°C). The worms were exposed to H2O2 (10 and 50 µM) for 4, 7, and 10 days and the following variables were determined: oxygen consumption, catalase (CAT) and glutathione peroxidase activity in both the supernatant and pellet fractions of whole body homogenates. The concentrations of non-protein sulfhydryl and lipid peroxides (LPO) were also measured. The oxygen consumption response was biphasic, decreasing after 4 days and increasing after 7 and 10 days of exposure to 50 µM H2O2 (P < 0.05). At the same H2O2 concentration, CAT activity was lower (P < 0.05) in the pellet fraction of worms exposed for 10 days compared to control. Non-protein sulfhydryl concentration and glutathione peroxidase activity were not affected by H2O2 exposure. After 10 days, LPO levels were higher (P < 0.05) in worms exposed to 50 µM H2O2 compared to control. The reduction in the antioxidant defense was paralleled by oxidative stress as indicated by higher LPO values (441% compared to control). The reduction of CAT activity in the pellet fraction may be related to protein oxidation. These results, taken together with previous findings, suggest that the worms were not able to cope with this H2O2 concentration.
Resumo:
Ampelozizyphus amazonicus Ducke is a tree commonly found in the Amazon region and an extract of its stem bark is popularly used as an antimalarial and anti-inflammatory agent and as an antidote to snake venom. Ursolic acid; five lupane type triterpenes: betulin, betulinic acid, lupenone, 3ß-hydroxylup-20(29)-ene-27,28-dioic acid, and 2a,3ß-dihydroxylup-20(29)-ene-27,28-dioic acid, and three phytosteroids: stigmasterol, sitosterol and campesterol, have been isolated from stem extracts of A. amazonicus Ducke. Their structures were characterized by spectral data including COSY and HMQC. In an in vitro biological screening of the isolated compounds, 3ß-hydroxylup-20(29)-ene-27,28-dioic acid was cytotoxic against the SKBR-3 human adenocarcinoma cell line (1 to 10 mg/mL), while 2a,3ß-dihydroxylup-20(29)-ene-27,28-dioic acid exhibited cytotoxicity against both SKBR-3 human adenocarcinoma and C-8161 human melanoma tumor cell lines (>0.1 mg/mL). In the present study, different extracts and some fractions of this plant were also investigated for trypanocidal activity due to the presence of pentacyclic triterpenes. The triterpene classes are potent against Trypanosoma cruzi. The bioassays were carried out using blood collected from Swiss albino mice by cardiac puncture during the parasitemic peak (7th day) after infection with the Y strain of T. cruzi. The results obtained showed that A. amazonicus is a potential source of bioactive compounds since its extracts and fractions isolated from it exhibited in vitro parasite lysis against trypomastigote forms of T. cruzi at concentrations >100 µg/mL. Fractions containing mainly betulin, lupenone, 3ß-hydroxylup-20(29)-ene-27,28-dioic acid, and 2a,3ß-dihydroxylup-20(29)-ene-27,28-dioic acid showed more activity than crude extracts.
Resumo:
A novel, rapid and cost-effective trifluoperazine dihydrochloride (TFPH) decolorization assay is described for the screening of antioxidant activity. A chromogenic reaction between TFPH and potassium persulfate at low pH produces an orange-red radical cation with maximum absorption at 502 nm in its first-order derivative spectrum. TFPH was dissolved in distilled water to give a 100 mM solution. The TFPH radical cation solution was made by reacting 0.5 mL of the solution with K2S2O8 (final concentration: 0.1 mM) and diluting to 100 mL with 4 M H2SO4 solution. A linear inhibition of color production was observed with linearly increasing amounts of antioxidants, with correlation coefficients (R²) ranging from 0.999 to 0.983. The antioxidant capacity of standard solutions of an antioxidant was evaluated by comparing with the inhibition curve using Trolox as the standard. Comparison of antioxidant capacity determined with this newly developed TFPH assay and with the well-known 2,2'-azinobis-[3-ethylbenzthiazoline-6-sulfonic acid] (ABTS)-persulfate decolorization assay indicated the efficacy and sensitivity of the procedure. The proposed assay is less expensive (costs about US$4 per 100 assays) and requires only 20 min for preparation of radical cation solution in comparison with ABTS assay, in which almost 12-16 h are required for preparation of a stable ABTS radical cation solution. The present assay has the advantage over ABTS assay that it can be used to measure the antioxidant activity of the samples, which are naturally found at a pH as low as 1, because the radical cation itself has been stabilized at low pH.
Resumo:
Streptococcus mutans membrane-bound P- and F-type ATPases are responsible for H+ extrusion from the cytoplasm thus keeping intracellular pH appropriate for cell metabolism. Toluene-permeabilized bacterial cells have long been used to study total membrane-bound ATPase activity, and to compare the properties of ATPase in situ with those in membrane-rich fractions. The aim of the present research was to determine if toluene permeabilization can significantly modify the activity of membrane-bound ATPase of both F-type and P-type. ATPase activity was assayed discontinuously by measuring phosphate release from ATP as substrate. Treatment of S. mutans membrane fractions with toluene reduced total ATPase activity by approximately 80% and did not allow differentiation between F- and P-type ATPase activities by use of the standard inhibitors vanadate (3 µM) and oligomycin (4 µg/mL). Transmission electron microscopy shows that, after S. mutans cells permeabilization with toluene, bacterial cell wall and plasma membrane are severely injured, causing cytoplasmic leakage. As a consequence, loss of cell viability and disruption of H+ extrusion were observed. These data suggest that treatment of S. mutans with toluene is an efficient method for cell disruption, but care should be taken in the interpretation of ATPase activity when toluene-permeabilized cells are used, because results may not reflect the real P- and F-type ATPase activities present in intact cell membranes. The mild conditions used for the preparation of membrane fractions may be more suitable to study specific ATPase activity in the presence of biological agents, since this method preserves ATPase selectivity for standard inhibitors.
Resumo:
(-)-∆9-Tetrahydrocannabinol (∆9-THC), a psychoactive component of marijuana, has been reported to induce oxidative damage in vivo and in vitro. In this study, we administered ∆9-THC to healthy C57BL/6J mice aged 15 weeks in order to determine its effect on hepatic redox state. Mice were divided into 3 groups: ∆9-THC (N = 10), treated with 10 mg/kg body weight ∆9-THC daily; VCtrl (N = 10), treated with vehicle [1:1:18, cremophor EL® (polyoxyl 35 castor oil)/ethanol/saline]; Ctrl (N = 10), treated with saline. Animals were injected ip twice a day with 5 mg/kg body weight for 10 days. Lipid peroxidation, protein carbonylation and DNA oxidation were used as biomarkers of oxidative stress. The endogenous antioxidant defenses analyzed were glutathione (GSH) levels as well as enzyme activities of superoxide dismutase, catalase, glutathione S-transferase, glutathione reductase, and glutathione peroxidase (GPx) in liver homogenates. The levels of mRNA of the cannabinoid receptors CB1 and CB2 were also monitored. Treatment with ∆9-THC did not produce significant changes in oxidative stress markers or in mRNA levels of CB1 and CB2 receptors in the liver of mice, but attenuated the increase in the selenium-dependent GPx activity (Δ9-THC: 8%; VCtrl: 23% increase) and the GSH/oxidized GSH ratio (Δ9-THC: 61%; VCtrl: 96% increase), caused by treatment with the vehicle. Δ9-THC administration did not show any harmful effects on lipid peroxidation, protein carboxylation or DNA oxidation in the healthy liver of mice but attenuated unexpected effects produced by the vehicle containing ethanol/cremophor EL®.
Resumo:
Statins are among the most prescribed drugs in recent clinical practice. They are also known for their pleiotropic actions, which are independent of their lipid-lowering properties. The effect of lovastatin was investigated against carrageenan-induced paw edema in male Wistar rats (200-250 g) and on leukocyte migration, as measured by carrageenan-induced peritonitis in male Swiss mice (20-25 g), which are models of acute inflammation. Lovastatin (administered 1 h prior to carrageenan), at oral doses of 2, 5, and 10 mg/kg, markedly attenuated paw edema formation in rats at the 4th hour after carrageenan injection (25, 43, and 37% inhibition, respectively). Inhibitions of 20, 45 and 80% were observed in the leukocyte migration, as evaluated by carrageenan-induced peritonitis in mice with lovastatin doses of 0.5, 1 and 5 mg/kg, as compared to controls. Furthermore, lovastatin (administered 1 h before initiation) reduced the nociceptive effect of the formalin test in mice, at both phases, at doses of 2, 5, and 10 mg/kg: first phase (51, 65, and 70%, respectively) and second phase (73, 57, and 66% inhibition of licking time, respectively). The anti-nociceptive activity of lovastatin was inhibited by naloxone (3 mg/kg, sc). Lovastatin (0.01, 0.1, and 1 µg/mL) inhibited by 23, 79, and 86%, respectively, the release of myeloperoxidase from human neutrophils. Leukocyte (predominantly neutrophils) infiltration was almost completely reduced by lovastatin treatment, as observed in the model of acute paw edema with hematoxylin and eosin staining. In addition, lovastatin decreased the number of cells expressing tumor necrosis factor-α (TNF-α) and the inducible form of nitric oxide synthase (iNOS) activity. Therefore, the alterations in leukocyte activity and cytokine release could contribute to the anti-inflammatory activity of lovastatin.
Resumo:
The aim of this study was to determine the correlation between total nitrite/nitrate concentrations (NOx) and the kinetic parameters of monoamine oxidase enzymes (MAO-A and MAO-B) and semicarbazide-sensitive amine oxidase (SSAO) in human mesenteric arteries. Arteries were from non-diabetic and type 2 diabetic patients with sigmoid or rectum carcinoma for whom surgery was the first option and who were not exposed to neo-adjuvant therapy. Segments of human inferior mesenteric arteries from non-diabetic (61.1 ± 8.9 years old, 7 males and 5 females, N = 12) and type 2 diabetic patients (65.8 ± 6.2 years old, 8 males and 4 females, N = 12) were used to determine NOx concentrations and the kinetic parameters of MAO-A, MAO-B and SSAO by the Griess reaction and by radiochemical assay, respectively. The NOx concentrations in arteries from diabetic patients did not differ significantly from those of the non-diabetic group (10.28 ± 4.61 vs 10.71 ± 4.32 nmol/mg protein, respectively). In the non-diabetic group, there was a positive correlation between NOx concentrations and MAO-B parameters: Km (r = 0.612, P = 0.034) and Vmax (r = 0.593, P = 0.042), and a negative correlation with the SSAO parameters: Km (r = -0.625, P = 0.029) and Vmax (r = -0.754, P = 0.005). However, in the diabetic group no correlation was found between NOx concentrations and the three kinetic parameters of the enzymes. These results suggest an important function of sympathetic nerves and vascular NOx concentrations in arteries of non-diabetic patients. Thus, these results confirm the importance of a balance between oxidants and antioxidants in the maintenance of vascular homeostasis to prevent oxidative stress.
Resumo:
Evaluating the activity of the complement system under conditions of altered thyroid hormone levels might help elucidate the role of complement in triggering autoimmune processes. Here, we investigated alternative pathway (AP) activity in male Wistar rats (180 ± 10 g) after altering their thyroid hormone levels by treatment with triiodothyronine (T3), propylthiouracil (PTU) or thyroidectomy. T3 and thyroxine (T4) levels were determined by chemiluminescence assays. Hemolytic assays were performed to evaluate the lytic activity of the AP. Factor B activity was evaluated using factor B-deficient serum. An anti-human factor B antibody was used to measure factor B levels in serum by radial immunodiffusion. T3 measurements in thyroidectomized animals or animals treated with PTU demonstrated a significant reduction in hormone levels compared to control. The results showed a reduction in AP lytic activity in rats treated with increasing amounts of T3 (1, 10, or 50 µg). Factor B activity was also decreased in the sera of hyperthyroid rats treated with 1 to 50 µg T3. Additionally, treating rats with 25 µg T3 significantly increased factor B levels in their sera (P < 0.01). In contrast, increased factor B concentration and activity (32%) were observed in hypothyroid rats. We conclude that alterations in thyroid hormone levels affect the activity of the AP and factor B, which may in turn affect the roles of AP and factor B in antibody production.
Resumo:
Pequi is the fruit of Caryocar brasiliense and its oil has a high concentration of monounsaturated and saturated fatty acids, which are anti- and pro-atherogenic agents, respectively, and of carotenoids, which give it antioxidant properties. Our objective was to study the effect of the intake of a cholesterol-rich diet supplemented with pequi oil, compared to the same diet containing soybean oil, on atherosclerosis development, and oxidative stress in atherosclerosis-susceptible LDL receptor-deficient mice (LDLr-/-, C57BL/6-background). Female mice were fed a cholesterol-rich diet containing 7% soybean oil (Soybean group, N = 12) or 7% pequi oil (Pequi group, N = 12) for 6 weeks. The Pequi group presented a more atherogenic lipid profile and more advanced atherosclerotic lesions in the aortic root compared to the Soybean group. However, the Pequi group presented a less advanced lesion in the aorta than the Soybean group and showed lower lipid peroxidation (Soybean group: 50.2 ± 7.1; Pequi group: 30.0 ± 4.8 µmol MDA/mg protein) and anti-oxidized LDL autoantibodies (Soybean group: 35.7 ± 9.4; Pequi group: 15.6 ± 3.7 arbitrary units). Peritoneal macrophages from the Pequi group stimulated with zymosan showed a reduction in the release of reactive oxygen species compared to the Soybean group. Our data suggest that a pequi oil-rich diet slows atherogenesis in the initial stages, possibly due to its antioxidant activity. However, the increase of serum cholesterol induces a more prominent LDL migration toward the intimae of arteries, increasing the advanced atherosclerotic plaque. In conclusion, pequi oil associated with an atherogenic diet worsens the lipid profile and accelerates the formation of advanced atherosclerotic lesions despite its antioxidant action.
Resumo:
This study evaluated the sedative and anesthetic effects of the essential oils (EO) of Hyptis mutabilis (Rich.) Briq. and their isolated components on silver catfish (Rhamdia quelen). Quantitative chemical differences between the EOs obtained from leaves and inflorescences were verified, and a new chemotype rich in globulol was described. Although there were no significant differences in the time of induction for sedation and anesthesia between the EOs, only the leaf EO at 344 mg/L anesthetized all fish without side effects. Fractionation of the leaf EO was carried out by column chromatography. The isolated compounds [(+)-1-terpinen-4-ol and (-)-globulol] showed different activity from that detected for the leaf EO in proportional concentrations and similar sedation to a eugenol control at 10 mg/L. However, fish exposed to 1-terpinen-4-ol (3 and 10 mg/L) did not remain sedated for 30 min. Anesthesia was obtained with 83-190 mg/L globulol, but animals showed loss of mucus during induction and mortality at these concentrations. Synergism of the depressor effects was detected with the association of globulol and benzodiazepine (BDZ), compared with either drug alone. Fish exposed to BDZ or globulol+BDZ association showed faster recovery from anesthesia in water containing flumazenil, but the same did not occur with globulol. In conclusion, the use of globulol in aquaculture procedures should be considered only at sedative concentrations of 10 and 20 mg/L, and its mechanism of action seems not to involve the GABAA-BDZ system.
Resumo:
The aim of this research was to investigate the antiproliferative and anticholinesterase activities of 11 extracts from 5 Annonaceae species in vitro. Antiproliferative activity was assessed using 10 human cancer cell lines. Thin-layer chromatography and a microplate assay were used to screen the extracts for acetylcholinesterase (AchE) inhibitors using Ellman's reagent. The chemical compositions of the active extracts were investigated using high performance liquid chromatography. Eleven extracts obtained from five Annonaceae plant species were active and were particularly effective against the UA251, NCI-470 lung, HT-29, NCI/ADR, and K-562 cell lines with growth inhibition (GI50) values of 0.04-0.06, 0.02-0.50, 0.01-0.12, 0.10-0.27, and 0.02-0.04 µg/mL, respectively. In addition, the Annona crassiflora and A. coriacea seed extracts were the most active among the tested extracts and the most effective against the tumor cell lines, with GI50 values below 8.90 µg/mL. The A. cacans extract displayed the lowest activity. Based on the microplate assay, the percent AchE inhibition of the extracts ranged from 12 to 52%, and the A. coriacea seed extract resulted in the greatest inhibition (52%). Caffeic acid, sinapic acid, and rutin were present at higher concentrations in the A. crassiflora seed samples. The A. coriacea seeds contained ferulic and sinapic acid. Overall, the results indicated that A. crassiflora and A. coriacea extracts have antiproliferative and anticholinesterase properties, which opens up new possibilities for alternative pharmacotherapy drugs.
Resumo:
This paper reports on the in vitro antibacterial and in vivo anti-inflammatory properties of a hydroethanolic extract of the aerial parts of Gochnatia pulchra (HEGP). It also describes the antibacterial activity of HEGP fractions and of the isolated compounds genkwanin, scutellarin, apigenin, and 3,5-O-dicaffeoylquinic acid, as evaluated by a broth microdilution method. While HEGP and its fractions did not provide promising results, the isolated compounds exhibited pronounced antibacterial activity. The most sensitive microorganism was Streptococcus pyogenes, with minimum inhibitory concentration (MIC) values of 100, 50 and 25 µg/mL for genkwanin and the flavonoids apigenin and scutellarin, respectively. Genkwanin produced an MIC value of 25 µg/mL against Enterococcus faecalis. A paw edema model in rats and a pleurisy inflammation model in mice aided investigation of the anti-inflammatory effects of HEGP. This study also evaluated the ability of HEGP to modulate carrageenan-induced interleukin-1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), and monocyte chemoattractant protein-1 (MCP-1) production. Orally administered HEGP (250 and 500 mg/kg) inhibited carrageenan-induced paw edema. Regarding carrageenan-induced pleurisy, HEGP at 50, 100, and 250 mg/kg diminished leukocyte migration by 71.43%, 69.24%, and 73.34% (P<0.05), respectively. HEGP suppressed IL-1β and MCP-1 production by 55% and 50% at 50 mg/kg (P<0.05) and 60% and 25% at 100 mg/kg (P<0.05), respectively. HEGP abated TNF-α production by macrophages by 6.6%, 33.3%, and 53.3% at 100, 250, and 500 mg/kg (P<0.05), respectively. HEGP probably exerts anti-inflammatory effects by inhibiting production of the pro-inflammatory cytokines TNF-α, IL-1β, and MCP-1.
Resumo:
Cocos nucifera (L.) (Arecaceae) is commonly called the “coconut tree” and is the most naturally widespread fruit plant on Earth. Throughout history, humans have used medicinal plants therapeutically, and minerals, plants, and animals have traditionally been the main sources of drugs. The constituents of C. nucifera have some biological effects, such as antihelminthic, anti-inflammatory, antinociceptive, antioxidant, antifungal, antimicrobial, and antitumor activities. Our objective in the present study was to review the phytochemical profile, pharmacological activities, and toxicology of C. nucifera to guide future preclinical and clinical studies using this plant. This systematic review consisted of searches performed using scientific databases such as Scopus, Science Direct, PubMed, SciVerse, and Scientific Electronic Library Online. Some uses of the plant were partially confirmed by previous studies demonstrating analgesic, antiarthritic, antibacterial, antipyretic, antihelminthic, antidiarrheal, and hypoglycemic activities. In addition, other properties such as antihypertensive, anti-inflammatory, antimicrobial, antioxidant, cardioprotective, antiseizure, cytotoxicity, hepatoprotective, vasodilation, nephroprotective, and anti-osteoporosis effects were also reported. Because each part of C. nucifera has different constituents, the pharmacological effects of the plant vary according to the part of the plant evaluated.
Antioxidant activity of rosemary and oregano ethanol extracts in soybean oil under thermal oxidation
Resumo:
Four experiments were conducted to measure the antioxidant activity of ethanol extracts of rosemary and oregano compared with synthetic antioxidants such as TBHQ and BHA/BHT. The antioxidant activity was determined and results differed from those of the Oven test at 63º C. Peroxide values and absorptivities at 232 nm of soybean oil under Oven test were lower in treatments with 25, 50, 75, 100 and 200 mg.Kg-1 TBHQ than in treatments with 1000 mg.Kg-1 oregano extract (O), 500 mg.Kg-1 rosemary extract (R) and their mixture R+O. All the treatments were effective in controlling the thermal oxidation of oils; the natural extracts were as effective as BHA+BHT and less effective than TBHQ. The natural extracts were mixed with 25, 50, 75 and 100 mg.Kg-1 TBHQ and then added to the oil. No improvement in antioxidative properties was observed. The best antioxidant concentration could be determined from polynomial regression and quadratic equation from the experimental data.