953 resultados para AIRCRAFT SEAT


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes a vision-based airborne collision avoidance system developed by the Australian Research Centre for Aerospace Automation (ARCAA) under its Dynamic Sense-and-Act (DSA) program. We outline the system architecture and the flight testing undertaken to validate the system performance under realistic collision course scenarios. The proposed system could be implemented in either manned or unmanned aircraft, and represents a step forward in the development of a “sense-and-avoid” capability equivalent to human “see-and-avoid”.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A history and introduction to civil unmanned aircraft systems in Australia. Discussion is provided on some of the current challenges facing the civil UAS sector and the research being undertaken to address these challenges.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This presentation explores the requirements and capabilities of Unmanned Aircraft Systems (UAS) for applications in Law Enforcement and Search and Rescue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Finite element analyses of the human body in seated postures requires digital models capable of providing accurate and precise prediction of the tissue-level response of the body in the seated posture. To achieve such models, the human anatomy must be represented with high fidelity. This information can readily be defined using medical imaging techniques such as Magnetic Resonance Imaging (MRI) or Computed Tomography (CT). Current practices for constructing digital human models, based on the magnetic resonance (MR) images, in a lying down (supine) posture have reduced the error in the geometric representation of human anatomy relative to reconstructions based on data from cadaveric studies. Nonetheless, the significant differences between seated and supine postures in segment orientation, soft-tissue deformation and soft tissue strain create a need for data obtained in postures more similar to the application posture. In this study, we present a novel method for creating digital human models based on seated MR data. An adult-male volunteer was scanned in a simulated driving posture using a FONAR 0.6T upright MRI scanner with a T1 scanning protocol. To compensate for unavoidable image distortion near the edges of the study, images of the same anatomical structures were obtained in transverse and sagittal planes. Combinations of transverse and sagittal images were used to reconstruct the major anatomical features from the buttocks through the knees, including bone, muscle and fat tissue perimeters, using Solidworks® software. For each MR image, B-splines were created as contours for the anatomical structures of interest, and LOFT commands were used to interpolate between the generated Bsplines. The reconstruction of the pelvis, from MR data, was enhanced by the use of a template model generated in previous work CT images. A non-rigid registration algorithm was used to fit the pelvis template into the MR data. Additionally, MR image processing was conducted to both the left and the right sides of the model due to the intended asymmetric posture of the volunteer during the MR measurements. The presented subject-specific, three-dimensional model of the buttocks and thighs will add value to optimisation cycles in automotive seat development when used in simulating human interaction with automotive seats.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years, car club and racing websites and forums have become an increasingly popular way for car enthusiasts to access racing and car club news, chat-rooms and message boards. However, no North American research has been found that has examined opinions and driving experiences of car and racing enthusiasts. The purpose of this study was to examine car club members’ opinions about and experiences with various aspects of driving, road safety and traffic legislation, with a particular focus on street racing. A web-based questionnaire (Survey Monkey) was developed using the expert panel method and was primarily based on validated instruments or questions that were developed from other surveys. The questionnaire included: 1) driver concerns regarding traffic safety issues and legislation; 2) attitudes regarding various driving activities; 3) leisure-time activities, including club activities; 4) driving experiences, including offences and collisions; and 5) socio-demographic questions. The survey was pre- tested and piloted. Electronic information letters were sent out to an identified list of car clubs and forums situated in southern Ontario. Car club participants were invited to fill out the questionnaire. This survey found that members of car clubs share similar concerns regarding various road safety issues with samples of Canadian drivers, although a smaller percentage of car club members are concerned about speeding-related driving. Car club members had varied opinions regarding Ontario’s Street Racers, Stunt and Aggressive Drivers Legislation. The respondents agreed the most with the new offences regarding not sitting in the driver’s seat, having a person in the trunk, or driving as close as possible to another vehicle, pedestrian or object on or near the highway without a reason. The majority disagreed with police powers of impoundment and on-the-spot licence suspensions. About three quarters of respondents reported no collisions or police stops for traffic offences in the past five years. Of those who had been stopped, the most common offence was reported as speeding. This study is the first in Canada to examine car club members’ opinions about and experiences with various aspects of driving, road safety and traffic legislation. Given the ubiquity of car clubs and fora in Canada, insights on members’ opinions and practices provide important information to road safety researchers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Digital human modeling (DHM), as a convenient and cost-effective tool, is increasingly incorporated into product and workplace design. In product design, it is predominantly used for the development of driver-vehicle systems. Most digital human modeling software tools, such as JACK, RAMSIS and DELMIA HUMANBUILDER provide functions to predict posture and positions for drivers with selected anthropometry according to SAE (Society of Automotive Engineers) Recommended Practices and other ergonomics guidelines. However, few studies have presented 2nd row passenger postural information, and digital human modeling of these passenger postures cannot be performed directly using the existing driver posture prediction functions. In this paper, the significant studies related to occupant posture and modeling were reviewed and a framework of determinants of driver vs. 2nd row occupant posture modeling was extracted. The determinants which are regarded as input factors for posture modeling include target population anthropometry, vehicle package geometry and seat design variables as well as task definitions. The differences between determinants of driver and 2nd row occupant posture models are significant, as driver posture modeling is primarily based on the position of the foot on the accelerator pedal (accelerator actuation point AAP, accelerator heel point AHP) and the hands on the steering wheel (steering wheel centre point A-Point). The objectives of this paper are aimed to investigate those differences between driver and passenger posture, and to supplement the existing parametric model for occupant posture prediction. With the guide of the framework, the associated input parameters of occupant digital human models of both driver and second row occupant will be identified. Beyond the existing occupant posture models, for example a driver posture model could be modified to predict second row occupant posture, by adjusting the associated input parameters introduced in this paper. This study combines results from a literature review and the theoretical modeling stage of a second row passenger posture prediction model project.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Digital human modelling (DHM) has today matured from research into industrial application. In the automotive domain, DHM has become a commonly used tool in virtual prototyping and human-centred product design. While this generation of DHM supports the ergonomic evaluation of new vehicle design during early design stages of the product, by modelling anthropometry, posture, motion or predicting discomfort, the future of DHM will be dominated by CAE methods, realistic 3D design, and musculoskeletal and soft tissue modelling down to the micro-scale of molecular activity within single muscle fibres. As a driving force for DHM development, the automotive industry has traditionally used human models in the manufacturing sector (production ergonomics, e.g. assembly) and the engineering sector (product ergonomics, e.g. safety, packaging). In product ergonomics applications, DHM share many common characteristics, creating a unique subset of DHM. These models are optimised for a seated posture, interface to a vehicle seat through standardised methods and provide linkages to vehicle controls. As a tool, they need to interface with other analytic instruments and integrate into complex CAD/CAE environments. Important aspects of current DHM research are functional analysis, model integration and task simulation. Digital (virtual, analytic) prototypes or digital mock-ups (DMU) provide expanded support for testing and verification and consider task-dependent performance and motion. Beyond rigid body mechanics, soft tissue modelling is evolving to become standard in future DHM. When addressing advanced issues beyond the physical domain, for example anthropometry and biomechanics, modelling of human behaviours and skills is also integrated into DHM. Latest developments include a more comprehensive approach through implementing perceptual, cognitive and performance models, representing human behaviour on a non-physiologic level. Through integration of algorithms from the artificial intelligence domain, a vision of the virtual human is emerging.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This presentation provides a review of current civil unmanned aircraft system operations and applications, the operational environment and aviation safety regulations in Australia. A summary of current regulatory reform efforts is also provided. The presentation includes new and existing research programs established to address the technical and social issues facing the unmanned aircraft systems industry and aid the regulatory reform process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper investigates a detailed Active Shock Control Bump Design Optimisation on a Natural Laminar Flow (NLF) aerofoil; RAE 5243 to reduce cruise drag at transonic flow conditions using Evolutionary Algorithms (EAs) coupled to a robust design approach. For the uncertainty design parameters, the positions of boundary layer transition (xtr) and the coefficient of lift (Cl) are considered (250 stochastic samples in total). In this paper, two robust design methods are considered; the first approach uses a standard robust design method, which evaluates one design model at 250 stochastic conditions for uncertainty. The second approach is the combination of a standard robust design method and the concept of hierarchical (multi-population) sampling (250, 50, 15) for uncertainty. Numerical results show that the evolutionary optimization method coupled to uncertainty design techniques produces useful and reliable Pareto optimal SCB shapes which have low sensitivity and high aerodynamic performance while having significant total drag reduction. In addition,it also shows the benefit of using hierarchical robust method for detailed uncertainty design optimization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exploiting wind-energy is one possible way to ex- tend flight duration for Unmanned Arial Vehicles. Wind-energy can also be used to minimise energy consumption for a planned path. In this paper, we consider uncertain time-varying wind fields and plan a path through them. A Gaussian distribution is used to determine uncertainty in the Time-varying wind fields. We use Markov Decision Process to plan a path based upon the uncertainty of Gaussian distribution. Simulation results that compare the direct line of flight between start and target point and our planned path for energy consumption and time of travel are presented. The result is a robust path using the most visited cell while sampling the Gaussian distribution of the wind field in each cell.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many governments throughout the world rely heavily on traffic law enforcement programs to modify driver behaviour and enhance road safety. There are two related functions of traffic law enforcement, apprehension and deterrence, and these are achieved through three processes: the establishment of traffic laws, the policing of those laws, and the application of penalties and sanctions to offenders. Traffic policing programs can vary by visibility (overt or covert) and deployment methods (scheduled and non-scheduled), while sanctions can serve to constrain, deter or reform offending behaviour. This chapter will review the effectiveness of traffic law enforcement strategies from the perspective of a range of high-risk, illegal driving behaviours including drink/drug driving, speeding, seat belt use and red light running. Additionally, this chapter discusses how traffic police are increasingly using technology to enforce traffic laws and thus reduce crashes. The chapter concludes that effective traffic policing involves a range of both overt and covert operations and includes a mix of automatic and more traditional manual enforcement methods. It is important to increase both the perceived and actual risk of detection by ensuring that traffic law enforcement operations are sufficiently intensive, unpredictable in nature and conducted as widely as possible across the road network. A key means of maintaining the unpredictability of operations is through the random deployment of enforcement and/or the random checking of drivers. The impact of traffic enforcement is also heightened when it is supported by public education campaigns. In the future, technological improvements will allow the use of more innovative enforcement strategies. Finally, further research is needed to continue the development of traffic policing approaches and address emerging road safety issues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rapid prototyping environments can speed up the research of visual control algorithms. We have designed and implemented a software framework for fast prototyping of visual control algorithms for Micro Aerial Vehicles (MAV). We have applied a combination of a proxy-based network communication architecture and a custom Application Programming Interface. This allows multiple experimental configurations, like drone swarms or distributed processing of a drone's video stream. Currently, the framework supports a low-cost MAV: the Parrot AR.Drone. Real tests have been performed on this platform and the results show comparatively low figures of the extra communication delay introduced by the framework, while adding new functionalities and flexibility to the selected drone. This implementation is open-source and can be downloaded from www.vision4uav.com/?q=VC4MAV-FW