972 resultados para AG NANOPARTICLES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A superhydrophobic surface has many advantages in micro/nanomechanical applications, such as low adhesion, low friction and high restitution coefficient, etc. In this paper, we introduce a novel and simple route to fabricate superhydrophobic surfaces using ZnO nanocrystals. First, tetrapod-like ZnO nanocrystals were prepared via a one-step, direct chemical vapor deposition (CVD) approach. The nanostructured ZnO material was characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD) and the surface functionalized by aminopropyltriethoxysilane (APS) was found to be hydrophobic. Then the superhydrophobic surface was constructed by depositing uniformly ZnO hydrophobic nanoparticles (HNPs) on the Poly(dimethylsiloxane) (PDMS) film substrate. Water wettability study revealed a contact angle of 155.4 +/- 2 degrees for the superhydrophobic surface while about 110 degrees for pure smooth PDMS films. The hysteresis was quite low, only 3.1 +/- 0.3 degrees. Microscopic observations showed that the surface was covered by micro- and nano-scale ZnO particles. Compared to other approaches, this method is rather convenient and can be used to obtain a large area superhydrophobic surface. The high contact angle and low hysteresis could be attributed to the micro/nano structures of ZnO material; besides, the superhydrophobic property of the as-constructed ZnO-PDMS surface could be maintained for at least 6 months. (C) Koninklijke Brill NV, Leiden, 2010

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present results of the synthesis of gold nanoclusters in sapphire, using Ar ion implantation and annealing in air. Unlike the conventional method of Au implantation followed by thermal annealing, Au was deposited on the surface of m- and a- cut sapphire single crystal samples including those pre-implanted with Ar ions. Au atoms were brought into the substrate by subsequent implantation of Ar ions to form Au nanoparticles. Samples were finally annealed stepwisely in air at temperatures ranging from 400 to 800 C and then studied using UV–vis absorption spectrometry, transmission electron microscopy and Rutherford backscattered spectrometry. Evidence of the formation Au nanoparticles...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

以药用植物宁夏枸杞愈伤组织为材料,离体培养诱导体细胞胚发生。采用多重示踪剂和γ射线能谱分析法研究不同浓度AgNO_3处理的枸杞体细胞胚发生过程中对多种痕量金属元素离子的吸收。结果表明:(1)当AgNO_3的浓度小于50mg/L时,随着AgNO_3浓度的增加,多种痕量金属离子的吸收率也随之增加,而超过此浓度后,对多种痕量金属离子的吸收影响不同。Ag~+对痕量金属离子的吸收有协同,拮抗或竞争的作用。(2)适当浓度的AgNO_3对细胞分化及体细胞胚发生有促进作用。当AgNO_3的浓度小于50mg/L时,随着AgNO_3浓度的增加,体细胞胚的发生频率随之增加。Ag~+对枸杞体细胞胚发生表现促进作用,当AgNO_3的浓度为50mg/L时,可大大提高愈伤组织中体细胞胚发生,是对照(不加AgNO_3)组的3倍左右。而超过此浓度后,Ag~+对枸杞体细胞胚发生表现毒害作用,体细胞胚的发生受到明显抑制。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

报道了 30MeV/ u(40)Ar+(nat)Ag反应中中等质量碎片(IMF)发射时间(τ)随发射源空间大小的演化规律,并对类弹碎片的发射时空进行了讨论.结果表明,IMF的发射时标与中等质量碎片关联函数以及发射源的核物质密度(ρ)有关,而与发射源的质量数的关系不大.对于能量较高的类弹碎片来说,在较小的核物质密度下提取的发射时间也较小,因此,在正常核物质密度参数下提取出的发射时间值可作为碎片实际发射时间的上限值.中速碎片的发射时间随密度大小的变化非常缓慢,提取出的发射时间值即可作为实际的发射时间。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Size modification of Au nanoparticles (NPs), deposited on the Au-thick film surface and irradiated by slow highly charged ions (SHCI) 40Arq+ (3 6 q 6 12) with fixed low dose of 4.3 1011 ions/cm2 and various energy ranging from 74.64 to 290.64 keV at room temperature (293.15 K), was investigated by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The effect of projectile kinetic energy on the modified size of NPs was explored by an appropriate choice of the fixed process parameters such as ion flux, irradiation temperature, incident angle, irradiation time, etc. The morphological changes of NPs were interpreted by models involving collisional mixing, Ostwald ripening (OR) and inverse Ostwald ripening (IOR) of spherical NPs on a substrate. A critical kinetic energy as well as a critical potential energy of the projectile in the Au NPs size modification process were observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic nanoparticles of nickel ferrite (NiFe2O4) have been synthesized by co-precipitation route using stable ferric and nickel salts with sodium hydroxide as the precipitating agent and oleic acid as the surfactant. X-ray diffraction (XRD) and transmission electron microscope (TEM) analyses confirmed the formation of single-phase nickel ferrite nanoparticles in the range 8-28 nm depending upon the annealing temperature of the samples during the synthesis. The size of the particles (d) was observed to be increasing linearly with annealing temperature of the sample while the coercivity with particle size goes through a maximum, peaking at similar to 11 nm and then decreases for larger particles. Typical blocking effects were observed below similar to 225 K for all the prepared samples. The superparamagnetic blocking temperature (T-B) was found to be increasing with increasing particle size that has been attributed to the increased effective anisotropy energy of the nanoparticles. The saturation moment of all the samples was found much below the bulk value of nickel ferrite that has been attributed to the disordered surface spins or dead/inert layer in these nanoparticles. (c) 2008 Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic nanoparticles of nickel substituted cobalt ferrite (NixCo1-xFe2O4:0 <= x <= 1) have been synthesized by co-precipitation route. Particles size as estimated by the full width half maximum (FWHM) of the strongest X-ray diffraction (XRD) peak and transmission electron microscopy (TEM) techniques was found in the range 18-28 +/- 4 nm. Energy dispersive X-ray (EDX) analysis confirms the presence of Co, Ni, Fe and oxygen as well as the desired phases in the prepared nanoparticles. The selective area electron diffraction (SAED) analysis confirms the crystalline nature of the prepared nanoparticles. Data collected from the magnetization hysteresis loops of the samples show that the prepared nanoparticles are highly magnetic at room temperature. Both coercivity and saturation magnetization of the samples were found to decrease linearly with increasing Ni-concentration in cobalt ferrite. Superparamagnetic blocking temperature as determined from the zero field cooled (ZFC) magnetization curve shows a decreasing trend with increasing Ni-concentration in cobalt ferrite nanoparticles. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic nanoparticles of Ni-doped cobalt ferrite [Co1-xNixFe2O4(0 <= x <= 1)] synthesized by coprecipitation route have been studied as a function of doping concentration (x) and particle size. The size of the particles as determined by X-ray diffractometer (XRD) and transmission electron microscope (TEM) analyses was found in the range 12-48 nm. The coercivity (H-C) and saturation magnetization (M-S) showed a decreasing behavior with increasing Ni concentration. M-S of all the samples annealed at 600 degrees C lies in the range 65.8-13.7 emu/gm. Field-cooled (FC) studies of the samples showed horizontal shift (exchange bias) and vertical shift in the magnetization loop. Strong decrease in exchange bias (H-b) and vertical shift (delta M) was found for low Ni concentrations while negligible decrease was found at higher concentrations. The presence of exchange bias in the low Ni-concentration region has been explained with reference to the interface spins interaction between a surface region (with structural and spin disorder) and a ferrimagnetic core region. M(T) graphs of the samples showed a decreasing trend of blocking temperature (T-b) with increasing Ni concentration. The decrease of T-b with increasing Ni concentration has been attributed to the lower anisotropy energy of Ni+2 ions as compared to Co+2 that increases the probability of the jump across the anisotropy barrier which in turn decreases the blocking temperature of the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a shell model which is capable of describing the spectra of upper g(9/2)-shell nuclei close to the N = Z line, we study the structure of two isomeric states 7(+) and 21(+) in the odd-odd N = Z nucleus Ag-94. It is found that both isomeric states exhibit a large collectivity. The 7(+) state is oblately deformed, and is suggested to be a shape isomer in nature. The 21(+) state becomes isomeric because of level inversion of the 19(+) and 21(+) states due to core excitations across the N = Z = 50 shell gap. Calculation of spectroscopic quadrupole moment indicates clearly an enhancement in these states due to the core excitations. However, the present shell model calculation that produces the 19(+)-21(+) level inversion cannot accept the large-deformation picture of Mukha et al.