924 resultados para ABORTIVE PLANT EFFECTS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This data set contains aboveground plant biomass in 2008 (Sown plant community, Weed plant community, Dead plant material, and Unidentified plant material; all measured in biomass as dry weight) of the monoculture plots of a large grassland biodiversity experiment (the Jena Experiment). In the monoculture plots the biomass of the sown plant community contains only a single species per plot and this species is a different one for each plot. Which species has been sown in which plot is stated in the plot information table for monocultures (see further details below). The monoculture plots of 3.5 x 3.5 m were established for all of the 60 plant species of the Jena Experiment species pool with two replicates per species. One of the replicate plots per species was given up after the vegetation period of 2007 for all but the nine species belonging also to the so called dominance experiment in Jena. These nine species are: Alopecurus pratensis, Anthriscus sylvestris, Arrhenatherum elatius, Dactylis glomerata, Geranium pratense, Poa trivialis, Phleum pratense, Trifolium repens and Trifolium pratense.In 2008 plot size was reduced to 2.5 x 2.5 m. These 60 species comprising the species pool of the Jena Experiment belong to four functional groups (grasses, legumes, tall and small herbs). Plots were sown in May 2002 and are since maintained by bi-annual weeding and mowing. Aboveground plant biomass was harvested twice in 2008 just prior to mowing (during peak standing biomass in early June and in late August) on all experimental plots of the monocultures. This was done by clipping the vegetation at 3 cm above ground in 2 rectangles of 0.2 x 0.5 m per plot. The location of these rectangles was assigned prior to each harvest by random selection of coordinates within the core area of the plots (i.e. excluding an outer edge of 0.5 m). The positions of the rectangles within plots were identical for all plots. The harvested biomass was sorted into categories: sown plant species, weed plant species (species not sown at the particular plot), detached dead plant material (i.e., dead plant material in the data file), and remaining plant material that could not be assigned to any category (i.e., unidentified plant material in the data file). All biomass was dried to constant weight (70°C, >= 48 h) and weighed. The data for individual subsamples (i.e. rectangles) and the mean over samples for all biomass measures are given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This data set contains aboveground plant biomass in 2009 (Sown plant community, Weed plant community, Dead plant material, and Unidentified plant material; all measured in biomass as dry weight) of the monoculture plots of a large grassland biodiversity experiment (the Jena Experiment). In the monoculture plots the biomass of the sown plant community contains only a single species per plot and this species is a different one for each plot. Which species has been sown in which plot is stated in the plot information table for monocultures (see further details below). The monoculture plots of 3.5 x 3.5 m were established for all of the 60 plant species of the Jena Experiment species pool with two replicates per species. One of the replicate plots per species was given up after the vegetation period of 2007 for all but the nine species belonging also to the so called dominance experiment in Jena. These nine species are: Alopecurus pratensis, Anthriscus sylvestris, Arrhenatherum elatius, Dactylis glomerata, Geranium pratense, Poa trivialis, Phleum pratense, Trifolium repens and Trifolium pratense.In 2008 plot size was reduced to 2.5 x 2.5 m. These 60 species comprising the species pool of the Jena Experiment belong to four functional groups (grasses, legumes, tall and small herbs). Plots were sown in May 2002 and are since maintained by bi-annual weeding and mowing. Aboveground plant biomass was harvested twice in 2009 just prior to mowing (during peak standing biomass in early June and in late August) on all experimental plots of the monocultures. This was done by clipping the vegetation at 3 cm above ground in 2 rectangles of 0.2 x 0.5 m per plot. The location of these rectangles was in the center of the plot area. The positions of the rectangles within plots were identical for all plots. The harvested biomass was sorted into categories: sown plant species, weed plant species (species not sown at the particular plot), detached dead plant material (i.e., dead plant material in the data file), and remaining plant material that could not be assigned to any category (i.e., unidentified plant material in the data file). All biomass was dried to constant weight (70°C, >= 48 h) and weighed. The data for individual subsamples (i.e. rectangles) and the mean over samples for all biomass measures are given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This data set contains aboveground plant biomass in 2002 (Sown plant community; measured in biomass as dry weight) of the monoculture plots of a large grassland biodiversity experiment (the Jena Experiment). In the monoculture plots the biomass of the sown plant community contains only a single species per plot and this species is a different one for each plot. Which species has been sown in which plot is stated in the plot information table for monocultures (see further details below). The monoculture plots of 3.5 x 3.5 m were established for all of the 60 plant species of the Jena Experiment species pool with two replicates per species. These 60 species comprising the species pool of the Jena Experiment belong to four functional groups (grasses, legumes, tall and small herbs). Plots were sown in May 2002 and are since maintained by bi-annual weeding and mowing. Aboveground plant biomass was harvested twice in 2002 just prior to mowing (during peak standing biomass in early June and in late August) on all experimental plots of the monocultures. This was done by clipping the vegetation at 3 cm above ground in 2 rectangles of 0.2 x 0.5 m per plot. The location of these rectangles was assigned prior to each harvest by random selection of coordinates within the core area of the plots (i.e. excluding an outer edge of 0.5 m). The positions of the rectangles within plots were identical for all plots. From the harvested biomass only the separated biomass of the sown plant species was kept. All biomass was dried to constant weight (70°C, >= 48 h) and weighed. The data for individual subsamples (i.e. rectangles) and the mean over samples for all biomass measures are given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This data set contains aboveground plant biomass in 2004 (Sown plant community, Weed plant community, Dead plant material, and Unidentified plant material; all measured in biomass as dry weight) of the monoculture plots of a large grassland biodiversity experiment (the Jena Experiment). In the monoculture plots the biomass of the sown plant community contains only a single species per plot and this species is a different one for each plot. Which species has been sown in which plot is stated in the plot information table for monocultures (see further details below). The monoculture plots of 3.5 x 3.5 m were established for all of the 60 plant species of the Jena Experiment species pool with two replicates per species. These 60 species comprising the species pool of the Jena Experiment belong to four functional groups (grasses, legumes, tall and small herbs). Plots were sown in May 2002 and are since maintained by bi-annual weeding and mowing. Aboveground plant biomass was harvested twice in 2004 just prior to mowing (during peak standing biomass in early June and in late August) on all experimental plots of the monocultures. This was done by clipping the vegetation at 3 cm above ground in 2 rectangles of 0.2 x 0.5 m per plot. The location of these rectangles was assigned prior to each harvest by random selection of coordinates within the core area of the plots (i.e. excluding an outer edge of 0.5 m). The positions of the rectangles within plots were identical for all plots. The harvested biomass was sorted into categories: sown plant species, weed plant species (species not sown at the particular plot), detached dead plant material (i.e., dead plant material in the data file), and remaining plant material that could not be assigned to any category (i.e., unidentified plant material in the data file). All biomass was dried to constant weight (70°C, >= 48 h) and weighed. The data for individual subsamples (i.e. rectangles) and the mean over samples for all biomass measures are given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of nanoparticle technology in consumer products has been increasing due to their broad-spectrum antimicrobial properties. Specifically, silver nanoparticles (AgNPs) can demonstrate distinct physiochemical properties compared to bulk silver, including a large surface area to volume ratio that allows for higher reactivity with bacterial cell surfaces. AgNPs are being released into the environment, including soil ecosystems through various pathways such as points of production or during disposal of silver-containing products. This raises the concern about the potential impact on beneficial soil bacteria and their surrounding ecosystems. Members of the Rhizobiaceae family play important roles in nutrient cycling and contribute to overall soil fertility and the experiments in this thesis address the potential for AgNP-mediated toxicity on these plant-associating bacteria. Respiration analysis of Bradyrhizobium japonicum, Azospirillum brasilense, and Agrobacterium tumefaciens has revealed that AgNPs can negatively impact the growth and survival of these bacterial species, with B. japonicum being the most susceptible. Additionally, swimming motility assays using B. japonicum showed a significant decrease in colony diameter when treated with AgNPs (50 ppm). A significant decrease in root colonization of Triticum aestivum roots by A. brasilense was observed as AgNP treatment concentrations increased. Although some of the experiments could not be completed, taken together, these experiments and the research reported herein highlights the potential toxicological effects of AgNPs on bacterial species vital to the growth and health of agriculturally important crops.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing temperatures resulting from climate change have within recent years been shown to advance phenological events in a large number of species worldwide. Species can differ in their response to increasing temperatures, and understanding the mechanisms that determine the response is therefore of great importance in order to understand and predict how a warming climate can influence both individual species, but also their interactions with each other and the environment. Understanding the mechanisms behind responses to increasing temperatures are however largely unexplored. The selected study system consisting of host plant species of the Brassicaceae family and their herbivore Anthocharis cardamines, is assumed to be especially vulnerable to climatic variations. Through the use of this study system, the aim of this thesis is to study differences in the effect of temperature on development to start of flowering within host plant species from different latitudinal regions (study I), and among host plant species (study II). We also investigate whether different developmental phases leading up to flowering differ in sensitivity to temperature (study II), and if small-scale climatic variation in spring temperature influence flowering phenology and interactions with A. cardamines (study III). Finally, we investigate if differences in the timing of A. cardamines relative to its host plants influence host species use and the selection of host individuals differing in phenology within populations (study IV). Our results showed that thermal reaction norms differ among regions along a latitudinal gradient, with the host plant species showing a mixture of co-, counter- and mixed gradient patterns (study I). We also showed that observed differences in the host plant species order of flowering among regions and years might be caused by both differences in the distribution of warm days during development and differences in the sensitivity to temperature in different phases of development (study II). In addition, we showed that small-scale variations in temperature led to variation in flowering phenology among and within populations of C. pratensis, impacting the interactions with the butterfly herbivore A. cardamines. Another result was that the less the mean plant development stage of a given plant species in the field deviated from the stage preferred by the butterfly for oviposition, the more used was the species as a host by the butterfly (study IV). Finally, we showed that the later seasonal appearance of the butterflies relative to their host plants, the higher butterfly preference for host plant individuals with a later phenology, corresponding to a preference for host plants in earlier development stages (study IV). For our study system, this thesis suggest that climate change will lead to changes in the interactions between host plants and herbivore, but that differences in phenology among host plants combined with changes in host species use of the herbivore might buffer the herbivore against negative effects of climate change. Our work highlights the need to understand the mechanisms behind differences in the responses of developmental rates to temperature between interacting species, as well as the need to account for differences in temperature response for interacting organisms from different latitudinal origins and during different developmental phases in order to understand and predict the consequences of climate change. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The long-standing Acid Growth Theory of plant cell elongation posits that auxin promotes cell elongation by stimulating cell wall acidification and thus expansin action. To date, the paucity of pertinent genetic materials has precluded thorough analysis of the importance of this concept in roots. The recent isolation of mutants of the model grass species Brachypodium distachyon with dramatically enhanced root cell elongation due to increased cellular auxin levels has allowed us to address this question. We found that the primary transcriptomic effect associated with elevated steady state auxin concentration in elongating root cells is upregulation of cell wall remodeling factors, notably expansins, while plant hormone signaling pathways maintain remarkable homeostasis. These changes are specifically accompanied by reduced cell wall arabinogalactan complexity but not by increased proton excretion. On the contrary, we observed a tendency for decreased rather than increased proton extrusion from root elongation zones with higher cellular auxin levels. Moreover, similar to Brachypodium, root cell elongation is, in general, robustly buffered against external pH fluctuation in Arabidopsis thaliana However, forced acidification through artificial proton pump activation inhibits root cell elongation. Thus, the interplay between auxin, proton pump activation, and expansin action may be more flexible in roots than in shoots.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Highly purified, intact chloroplasts were prepared from pea (Pisum sativum L.) and spinach (Spinacia oleracea L.) following an identical procedure, and were used to investigate the cupric cation inhibition on the photosynthetic activity. In both species, copper inhibition showed a similar inhibitor concentration that decreases the enzyme activity by 50% (IC(50) approximately 1.8 microM) and did not depend on the internal or external phosphate (Pi) concentration, indicating that copper did not interact with the Pi translocator. Fluorescence analysis suggested that the presence of copper did not facilitate photoinhibition, because there were no changes in maximal fluorescence (F(m)) nor in basal fluorescence (F(o)) of copper-treated samples. The electron transport through the photosystem II (PSII) was also not affected (operating efficiency of PSII-F'v/F'm similar in all conditions). Yet, under Cu(2+) stress, the proportion of open PSII reaction centers was dramatically decreased, and the first quinone acceptor (Q(A)) reoxidation was fully inhibited, as demonstrated by the constant photochemical quenching (q(P)) along experiment time. The quantum yield of PSII electron transport (Phi(PSII)) was also clearly affected by copper, and therefore reduced the photochemistry efficiency. Manganese, when added simultaneously with copper, delayed the inhibition, as measured by oxygen evolution and chlorophyll fluorescence, but neither reversed the copper effect when added to copper-inhibited plastids, nor prevented the inhibition of the Hill activity of isolated copper-treated thylakoids. Our results suggest that manganese competed with copper to penetrate the chloroplast envelope. This competition seems to be specific because other divalent cations e.g. magnesium and calcium, did not interfere with the copper action in intact chloroplasts. All results do suggest that, under these conditions, the stroma proteins, such as the Calvin-Benson cycle enzymes or others are the most probable first target for the Cu(2+) action, resulting in the total inhibition of chloroplast photosynthesis and in the consequent unbalanced rate of production and consumption of the reducing power.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large plants are often more conspicuous and more attractive for associated animals than small plants, e.g. due to their wider range of resources. Therefore, plant size can positively affect species richness of associated animals, as shown for single groups of herbivores, but studies usually consider intraspecific size differences of plants in unstandardised environments. As comprehensive tests of interspecific plant size differences under standardised conditions are missing so far, we investigated effects of plant size on species richness of all associated arthropods using a common garden experiment with 21 Brassicaceae species covering a broad interspecific plant size gradient from 10 to 130 cm height. We recorded plant associated ecto-and endophagous herbivores, their natural enemies and pollinators on and in each aboveground plant organ, i.e. flowers, fruits, leaves and stems. Plant size (measured as height from the ground), the number of different plant organ entities and their biomass were assessed. Increasing plant size led to increased species richness of associated herbivores, natural enemies and pollinating insects. This pattern was found for ectophagous and endophagous herbivores, their natural enemies, as well as for herbivores associated with leaves and fruits and their natural enemies, independently of the additional positive effects of resource availability (i.e. organ biomass or number of entities and, regarding natural enemies, herbivore species richness). We found a lower R-2 for pollinators compared to herbivores and natural enemies, probably caused by the high importance of flower characteristics for pollinator species richness besides plant size. Overall, the increase in plant height from 10 to 130 cm led to a 2.7-fold increase in predicted total arthropod species richness. In conclusion, plant size is a comprehensive driver of species richness of the plant associated arthropods, including pollinators, herbivores and their natural enemies, whether they are endophagous or ectophagous or associated with leaves or fruits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brassicales species rich in glucosinolates are used for biofumigation, a process based on releasing enzymatically toxic isothiocyanates into the soil. These hydrolysis products are volatile and often reactive compounds. Moreover, glucosinolates can be degraded also without the presence of the hydrolytic enzyme myrosinase which might contribute to bioactive effects. Thus, in the present study the stability of Brassicaceae plant-derived and pure glucosinolates hydrolysis products was studied using three different soils ( model biofumigation). In addition, the degradation of pure 2-propenyl glucosinolate was investigated with special regard to the formation of volatile breakdown products. Finally, the influence of pure glucosinolate degradation on the bacterial community composition was evaluated using denaturing gradient gel electrophoresis of 16S rRNA gene amplified from total community DNA. The model biofumigation study revealed that the structure of the hydrolysis products had a significant impact on their stability in the soil but not the soil type. Following the degradation of pure 2-propenyl glucosinolate in the soils, the nitrile as well as the isothiocyanate can be the main degradation products, depending on the soil type. Furthermore, the degradation was shown to be both chemically as well as biologically mediated as autoclaving reduced degradation. The nitrile was the major product of the chemical degradation and its formation increased with iron content of the soil. Additionally, the bacterial community composition was significantly affected by adding pure 2-propenyl glucosinolate, the effect being more pronounced than in treatments with myrosinase added to the glucosinolate. Therefore, glucosinolates can have a greater effect on soil bacterial community composition than their hydrolysis products.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon (C) sequestration in soils is a means for increasing soil organic carbon (SOC) stocks and is a potential tool for climate change mitigation. One recommended management practice to increase SOC stocks is nitrogen (N) fertilisation, however examples of positive, negative or null SOC effects in response to N addition exist. We evaluated the relative importance of plant molecular structure, soil physical properties and soil ecological stoichiometry in explaining the retention of SOC with and without N addition. We tracked the transformation of 13C pulse-labelled buffel grass (Cenchrus ciliaris L.), wheat (Triticum aestivum L.) and lucerne (Medicago sativa L.) material to the <53 μm silt + clay soil organic C fraction, hereafter named “humus”, over 365-days of incubation in four contrasting agricultural soils, with and without urea-N addition. We hypothesised that: a) humus retention would be soil and litter dependent; b) humus retention would be litter independent once litter C:N ratios were standardised with urea-N addition; and c) humus retention would be improved by urea-N addition. Two and three-way factorial analysis of variance indicated that 13C humus was consistently soil and litter dependent, even when litter C:N ratios were standardised, and that the effect of urea-N addition on 13C humus was also soil and litter dependent. A boosted regression analysis of the effect of 44 plant and soil explanatory variables demonstrated that soil biological and chemical properties had the greatest relative influence on 13C humus. Regression tree analyses demonstrated that the greatest gains in 13C humus occurred in soils of relatively low total organic C, dissolved organic C and microbial biomass C (MBC), or with a combination of relatively high MBC and low C:N ratio. The greatest losses in 13C humus occurred in soils with a combination of relatively high MBC and low total N or increasing C:N ratio. We conclude that soil variables involved in soil ecological stoichiometry exert a greater relative influence on incorporating organic matter as humus compared to plant molecular structure and soil physical properties. Furthermore, we conclude that the effect of N fertilisation on humus retention is dependent upon soil ecological stoichiometry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cannabinoids (CBs) can be classified as: phytocannabinoids, the constituents of the Cannabis sativa plant; synthetic cannabinoids lab-synthesized and the endocannabinoids that are endogenous lipid mediators. Cannabinoid compounds activate cannabinoid receptors – CB1 and CB2. The most prevalent psychoactive phytocannabinoid is Δ9tetrahydrocannabinol (THC), but more than 60 different CBs were already identified in the plant. The best characterized endocannabinoids (eCBs) are anandamide (AEA) and 2arachidonoylglycerol (2-AG), that are involved in several physiological processes including synaptic plasticity, pain modulation, energy homeostasis and reproduction. On the other hand, some synthetic cannabinoids that were initially designed for medical research, are now used as drugs of abuse. During the period of placental development, highly dynamic processes of remodeling occur, involving proliferation, apoptosis, differentiation and invasion of trophoblasts. It is known that a tight control of eCBs levels is required for normal pregnancy progression and that eCBs are involved in trophoblast cells turnover. Therefore, by sharing activation of the same receptors, exposure to exocannabinoids either by recreational or medicinal use may lead to alterations in the eCBs levels and in the endocannabinoid system homeostasis In this work, it was studied the impact of CBs in BeWo trophoblastic cells and in primary cultures of human cytotrophoblasts. Cells were treated for 24 hours with different concentrations of THC, the synthetic cannabinoid WIN‐55,212 (WIN) and 2-AG. Treatment with THC did not affect BeWo cells viability while WIN and 2-AG caused a dose-dependent viability loss. Morphological studies together with biochemical markers indicate that 2-AG is able to induce apoptosis in cytotrophoblasts. On the other hand, morphological studies after acridine orange staining suggest that autophagy may take part in WIN-induced loss of cell viability. All cannabinoids caused a decrease in mitochondrial membrane potential (Δψm) but only 2-AG led to ROS/RNS generation, though no changes in glutathione levels were observed. In addition, ER-stress may be involved in the 2-AG induced-oxidative stress, as preliminary results point to an increase in CCAAT-enhancer-binding protein homologous protein (CHOP) expression. Besides the decrease in cell viability, alterations in cell cycle progression were observed. WIN treatment induced a cell cycle arrest in G0/G1 phase, whereas 2-AG induced a cell cycle arrest in G2/M phase. Here it is reinforced the relevance of cannabinoid signaling in fundamental processes of cell proliferation and cell death in trophoblast cells. Since cannabis-based drugs are the most consumed illicit drugs worldwide and some of the most consumed recreational drugs by pregnant women, this study may contribute to the understanding of the impact of such substances in human reproduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A large SAV bed in upper Chesapeake Bay has experienced several abrupt shifts over the past half-century, beginning with near-complete loss after a record-breaking flood in 1972, followed by an unexpected, rapid resurgence in the early 2000’s, then partial decline in 2011 following another major flood event. Together, these trends and events provide a unique opportunity to study a recovering SAV ecosystem from several different perspectives. First, I analyzed and synthesized existing time series datasets to make inferences about what factors prompted the recovery. Next, I analyzed existing datasets, together with field samples and a simple hydrodynamic model to investigate mechanisms of SAV bed loss and resilience to storm events. Finally, I conducted field deployments and experiments to explore how the bed affects internal physical and biogeochemical processes and what implications those effects have for the dynamics of the system. I found that modest reductions in nutrient loading, coupled with several consecutive dry years likely facilitated the SAV resurgence. Furthermore, positive feedback processes may have played a role in the sudden nature of the recovery because they could have reinforced the state of the bed before and after the abrupt shift. I also found that scour and poor water clarity associated with sediment deposition during the 2011 flood event were mechanisms of plant loss. However, interactions between the bed, water flow, and waves served as mechanisms of resilience because these processes created favorable growing conditions (i.e., clear water, low flow velocities) in the inner core of the bed. Finally, I found that that interactions between physical and biogeochemical processes led to low nutrient concentrations inside the bed relative to outside the bed, which created conditions that precluded algal growth and reinforced vascular plant dominance. This work demonstrates that positive feedbacks play a central role in SAV resilience to both chronic eutrophication as well as acute storm events. Furthermore, I show that analysis of long-term ecological monitoring data, together with field measurements and experiments, can be an effective approach for understanding the mechanisms underlying ecosystem dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lenticel discolouration (LD) is a common disorder of mango fruit around the world. It results in poor appearance and disappointment of consumers. LD is exacerbated by treatment of mango fruit with gamma irradiation for insect disinfestation. The issue is problematic on the relatively new mango cultivar 'B74' and may represent an oxidative browning process. With a view to reducing irradiationinduced LD on 'B74', postharvest wax (one and three layers; 75% carnauba wax) and antioxidant (100 mM ascorbic acid, 100 mM calcium chloride, 10, 50 and 100 mM calcium ascorbate) dip treatments were investigated. Treatment of green mature fruit with three layers of wax prior to exposure to 557 Gy gamma irradiation reduced LD by 40% relative to the non-waxed control. However, the fruit failed to ripen properly as evidenced by delayed skin colour change, retarded softening and increased skin browning as compared to the controls and fruit coated with one layer of wax. Treatment with one layer of wax did not reduce LD. Mechanistically, the responses suggest that air exchange plays a pivotal role in LD. A lowered oxygen concentration in the lenticels may reduce the disorder after irradiation treatment. Postharvest treatments with the various antioxidants failed to reduce LD. Rather, all antioxidant treatments at the test concentrations, except calcium chloride, significantly increased skin browning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND AND AIMS: Silicon has been shown to enhance the resistance of plants to fungal and bacterial pathogens. Here, the effect of potassium silicate was assessed on two cotton (Gossypium hirsutum) cultivars subsequently inoculated with Fusarium oxysporum f. sp. vasinfectum (Fov). Sicot 189 is moderately resistant whilst Sicot F-1 is the second most resistant commercial cultivar presently available in Australia. METHODS: Transmission and light microscopy were used to compare cellular modifications in root cells after these different treatments. The accumulation of phenolic compounds and lignin was measured. KEY RESULTS: Cellular alterations including the deposition of electron-dense material, degradation of fungal hyphae and occlusion of endodermal cells were more rapidly induced and more intense in endodermal and vascular regions of Sicot F-1 plants supplied with potassium silicate followed by inoculation with Fov than in similarly treated Sicot 189 plants or in silicate-treated plants of either cultivar not inoculated with Fov. Significantly more phenolic compounds were present at 7 d post-infection (dpi) in root extracts of Sicot F-1 plants treated with potassium silicate followed by inoculation with Fov compared with plants from all other treatments. The lignin concentration at 3 dpi in root material from Sicot F-1 treated with potassium silicate and inoculated with Fov was significantly higher than that from water-treated and inoculated plants. CONCLUSIONS: This study demonstrates that silicon treatment can affect cellular defence responses in cotton roots subsequently inoculated with Fov, particularly in Sicot F-1, a cultivar with greater inherent resistance to this pathogen. This suggests that silicon may interact with or initiate defence pathways faster in this cultivar than in the less resistant cultivar.