910 resultados para 770400 Coastal and Estuarine Environment
Resumo:
A range of forecasts of global oil production made between 1956 and the present day are listed. For the majority of these the methodology used to generate the forecast is described. The paper distinguishes between three types of forecast: group 1-quantitative analyses which predict that global oil production will reach a resource-limited peak in the near term, and certainly before the year 2020; group 2-forecasts that use quantitative methods, but which see no production peak within the forecast's time horizon (typically 2020 or 2030); group 3-nonquantitative analyses that rule out a resource-limited oil peak within the foreseeable future. The paper analyses these forecast types and suggests that group 1 forecasts are the most realistic.
Resumo:
Purpose: The purpose of this paper is to address a classic problem – pattern formation identified by researchers in the area of swarm robotic systems – and is also motivated by the need for mathematical foundations in swarm systems. Design/methodology/approach: The work is separated out as inspirations, applications, definitions, challenges and classifications of pattern formation in swarm systems based on recent literature. Further, the work proposes a mathematical model for swarm pattern formation and transformation. Findings: A swarm pattern formation model based on mathematical foundations and macroscopic primitives is proposed. A formal definition for swarm pattern transformation and four special cases of transformation are introduced. Two general methods for transforming patterns are investigated and a comparison of the two methods is presented. The validity of the proposed models, and the feasibility of the methods investigated are confirmed on the Traer Physics and Processing environment. Originality/value: This paper helps in understanding the limitations of existing research in pattern formation and the lack of mathematical foundations for swarm systems. The mathematical model and transformation methods introduce two key concepts, namely macroscopic primitives and a mathematical model. The exercise of implementing the proposed models on physics simulator is novel.
Resumo:
A physiological experiment was carried out in a naturally ventilated, non-HVAC indoor environment of a spacious experimental room. More than 300 healthy university students volunteered for this study. The purpose of the study was to investigate the human physiological indicators which could be used to characterise the indoor operative temperature changes in a building and their impact on human thermal comfort based on the different climatic characteristics people would experience in Chongqing, China. The study found that sensory nerve conduction velocity (SCV) could objectively provide a good indicator for assessment of the human response to changes in indoor operative temperatures in a naturally ventilated situation. The results showed that with the changes in the indoor operative temperatures, the changing trend in the nerve conduction velocity was basically the same as that of the skin temperature at the sensory nerve measuring segment (Tskin(scv)). There was good coherent consistency among the factors: indoor operative temperature, SCV and Tskin(scv) in a certain indoor operative temperature range. Through self-adaptation and self-feedback regulation, the human physiological indicators would produce certain adaptive changes to deal with the changes in indoor operative temperature. The findings of this study should provide the baseline data to inform guidelines for the development of thermal environment-related standards that could contribute to efficient use of energy in buildings in China.
Resumo:
By means of a monitoring experiment in two rivers in the Netherlands, we establish a relationship between seasonally resolved growth rates in unionid freshwater bivalves and their environment. We reconstructed these seasonally resolved growth rates by using relationships of stable isotopes in the shells and their ambient river water. The reconstructed growth rates reveal that shells grow fastest in spring-early summer, when highest food availability occurs in the rivers. In addition, the reconstructed growth rates show that onset and cessation of growth are mainly influenced by water temperature.
Resumo:
Current mathematical models in building research have been limited in most studies to linear dynamics systems. A literature review of past studies investigating chaos theory approaches in building simulation models suggests that as a basis chaos model is valid and can handle the increasingly complexity of building systems that have dynamic interactions among all the distributed and hierarchical systems on the one hand, and the environment and occupants on the other. The review also identifies the paucity of literature and the need for a suitable methodology of linking chaos theory to mathematical models in building design and management studies. This study is broadly divided into two parts and presented in two companion papers. Part (I) reviews the current state of the chaos theory models as a starting point for establishing theories that can be effectively applied to building simulation models. Part (II) develops conceptual frameworks that approach current model methodologies from the theoretical perspective provided by chaos theory, with a focus on the key concepts and their potential to help to better understand the nonlinear dynamic nature of built environment systems. Case studies are also presented which demonstrate the potential usefulness of chaos theory driven models in a wide variety of leading areas of building research. This study distills the fundamental properties and the most relevant characteristics of chaos theory essential to building simulation scientists, initiates a dialogue and builds bridges between scientists and engineers, and stimulates future research about a wide range of issues on building environmental systems.
Resumo:
Current mathematical models in building research have been limited in most studies to linear dynamics systems. A literature review of past studies investigating chaos theory approaches in building simulation models suggests that as a basis chaos model is valid and can handle the increasing complexity of building systems that have dynamic interactions among all the distributed and hierarchical systems on the one hand, and the environment and occupants on the other. The review also identifies the paucity of literature and the need for a suitable methodology of linking chaos theory to mathematical models in building design and management studies. This study is broadly divided into two parts and presented in two companion papers. Part (I), published in the previous issue, reviews the current state of the chaos theory models as a starting point for establishing theories that can be effectively applied to building simulation models. Part (II) develop conceptual frameworks that approach current model methodologies from the theoretical perspective provided by chaos theory, with a focus on the key concepts and their potential to help to better understand the nonlinear dynamic nature of built environment systems. Case studies are also presented which demonstrate the potential usefulness of chaos theory driven models in a wide variety of leading areas of building research. This study distills the fundamental properties and the most relevant characteristics of chaos theory essential to (1) building simulation scientists and designers (2) initiating a dialogue between scientists and engineers, and (3) stimulating future research on a wide range of issues involved in designing and managing building environmental systems.
Resumo:
In 1917 D.H. Lawrence's whole outlook on the social and cultural environment of his country was embodied in his attitude towards the literary marketplace. The suppression of The Rainbow in 1915 and his opposition to the war contributed to his feeling of detachment from what he called ‘the bourgeois world, the world which controls press, publication and all’. Presenting new archival evidence, this article examines the publishing history of the poetry volume Look! We Have Come Through, issued by Chatto & Windus in 1917. Closer examination of the motives of the individual editors involved in the production of the volume reveals why Lawrence was required to make changes to his text but also why the firm were eager to publish a volume that was to have little commercial impact. Issued at a critical moment in Lawrence's relationship with the marketplace, and in the history of literary modernism, the episode shows how, in spite of general hostility to his work, there were forces in the mainstream publishing market that were keen to embrace modern literary forms and take risks with the work of authors whose subject-matter was challenging and potentially dangerous.
Resumo:
There have been various techniques published for optimizing the net present value of tenders by use of discounted cash flow theory and linear programming. These approaches to tendering appear to have been largely ignored by the industry. This paper utilises six case studies of tendering practice in order to establish the reasons for this apparent disregard. Tendering is demonstrated to be a market orientated function with many subjective judgements being made regarding a firm's environment. Detailed consideration of 'internal' factors such as cash flow are therefore judged to be unjustified. Systems theory is then drawn upon and applied to the separate processes of estimating and tendering. Estimating is seen as taking place in a relatively sheltered environment and as such operates as a relatively closed system. Tendering, however, takes place in a changing and dynamic environment and as such must operate as a relatively open system. The use of sophisticated methods to optimize the value of tenders is then identified as being dependent upon the assumption of rationality, which is justified in the case of a relatively closed system (i.e. estimating), but not for a relatively open system (i.e. tendering).
Resumo:
In a global business economy, firms have a broad range of corporate real estate needs. During the past decade, multiple strategies and tactics have emerged in the corporate real estate community for meeting those needs. We propose here a framework for analysing and prioritising the various types of risk inherent in corporate real estate decisions. From a business strategy perspective, corporate real estate must serve needs beyond the simple one of shelter for the workforce and production process. Certain uses are strategic in that they allow access to externalities, embody the business strategy, or provide entrée to new markets. Other uses may be tactical, in that they arise from business activities of relatively short duration or provide an opportunity to pre-empt competitors. Still other corporate real estate uses can be considered “core” to the existence of the business enterprise. These might be special use properties or may be generic buildings that have become embodiments of the organisation’s culture. We argue that a multi-dimensional matrix approach organised around three broad themes and nine sub-categories allow the decision-maker to organise and evaluate choices with an acceptable degree of rigor and thoroughness. The three broad themes are Use (divided into Core, Cyclical or Casual) – Asset Type (which can be Strategic, Specialty or Generic) and Market Environment (which ranges from Mature Domestic to Emerging Economy). Proper understanding of each of these groupings brings critical variables to the fore and allows for efficient resource allocation and enhanced risk management.
Resumo:
Tourism is the worlds largest employer, accounting for 10% of jobs worldwide (WTO, 1999). There are over 30,000 protected areas around the world, covering about 10% of the land surface(IUCN, 2002). Protected area management is moving towards a more integrated form of management, which recognises the social and economic needs of the worlds finest areas and seeks to provide long term income streams and support social cohesion through active but sustainable use of resources. Ecotourism - 'responsible travel to natural areas that conserves the environment and improves the well- being of local people' (The Ecotourism Society, 1991) - is often cited as a panacea for incorporating the principles of sustainable development in protected area management. However, few examples exist worldwide to substantiate this claim. In reality, ecotourism struggles to provide social and economic empowerment locally and fails to secure proper protection of the local and global environment. Current analysis of ecotourism provides a useful checklist of interconnected principles for more successful initiatives, but no overall framework of analysis or theory. This paper argues that applying common property theory to the application of ecotourism can help to establish more rigorous, multi-layered analysis that identifies the institutional demands of community based ecotourism (CBE). The paper draws on existing literature on ecotourism and several new case studies from developed and developing countries around the world. It focuses on the governance of CBE initiatives, particularly the interaction between local stakeholders and government and the role that third party non-governmental organisations can play in brokering appropriate institutional arrangements. The paper concludes by offering future research directions."