901 resultados para 690202 Coastal water transport
Resumo:
In 2001, the U.S. Geological Survey, as part of the National Water Quality Assessment (NAWQA) Program, initiated a topical study of Transport of Anthropogenic and Natural Contaminants (TANC) to PSW (public-supply wells). Local-scale and regional-scale TANC study areas were delineated within selected NAWQA study units for intensive study of processes effecting transport of contaminants to PSWs. This report describes results from a local-scale TANC study area at York, Nebraska, within the High Plains aquifer, including the hydrogeology and geochemistry of a 108-square-kilometer study area that contains the zone of contribution to a PSW selected for study (study PSW), and describes factors controlling the transport of selected anthropogenic and natural contaminants to PSWs.
Resumo:
Molecular Dynamics (MD) simulation is one of the most important computational techniques with broad applications in physics, chemistry, chemical engineering, materials design and biological science. Traditional computational chemistry refers to quantum calculations based on solving Schrodinger equations. Later developed Density Functional Theory (DFT) based on solving Kohn-Sham equations became the more popular ab initio calculation technique which could deal with ~1000 atoms by explicitly considering electron interactions. In contrast, MD simulation based on solving classical mechanics equations of motion is a totally different technique in the field of computational chemistry. Electron interactions were implicitly included in the empirical atom-based potential functions and the system size to be investigated can be extended to ~106 atoms. The thermodynamic properties of model fluids are mainly determined by macroscopic quantities, like temperature, pressure, density. The quantum effects on thermodynamic properties like melting point, surface tension are not dominant. In this work, we mainly investigated the melting point, surface tension (liquid-vapor and liquid-solid) of model fluids including Lennard-Jones model, Stockmayer model and a couple of water models (TIP4P/Ew, TIP5P/Ew) by means of MD simulation. In addition, some new structures of water confined in carbon nanotube were discovered and transport behaviors of water and ions through nano-channels were also revealed.
Resumo:
Vibrio cholerae is an autochthonous marine bacterium, and its association with diverse planktonic crustaceans has been extensively investigated; however, the presence of V. cholerae on individuals of most phyla of planktonic animals is still incompletely understood. The objective of this study was to analyze the distribution of V. cholerae serogroup O1 associated with specific zooplankton taxa in an estuary and the adjacent continental shelf of the southeastern Brazilian coast. The occurrence of the bacterium was assessed in zooplankton samples, specifically on the most abundant taxa, using direct fluorescence assay (DFA) and direct viable count-direct fluorescence assay (DVC-DFA) methods. Vibrio cholerae O1 was detected in 88% of samples collected from the Santos-Bertioga estuary and in 67% of samples from the shelf. The salinity of the estuarine water ranged from 21.8 to 34.6, significantly lower than the shelf water which was 32.1-36.1. Salinity was the only environmental variable measured that displayed a significant correlation with the presence of V. cholerae (P < 0.05). Vibrio cholerae O1 was detected in chaetognaths, pluteus larvae of echinoderms and planktonic fish eggs (Engraulidae), all new sites for this bacterium.
Resumo:
We studied the population dynamics and the reproductive biology of Penilia avirostris during three consecutive years on the inner shelf off Ubatuba, Brazil. Penilia avirostris individuals and its eggs and embryos were counted, measured, and classified into stages. The species occurred throughout the studied period, in a wide temperature range (14.8-28.2A degrees C). Cladoceran densities were usually higher (> 2,000 ind m(-3)) in warm seasons, when the water column was stratified as a consequence of bottom intrusions of the cold- and nutrient-rich South Atlantic Central Water. Juveniles, non-reproducing females, and parthenogenic females were the dominant developmental stages. Males and gamogenic females were rare and only occurred when females reached peak abundances. This suggests that in tropical and subtropical coastal seas gamogenesis in P. avirostris is not as common as in temperate seas, but may play a significant role in the density-dependent control of the population preceding unfavourable periods.
Resumo:
Sao Paulo state (Brazil) has one of the most overpopulated coastal zones in South America, where previous studies have already detected sediment and water contamination. However, biological-based monitoring considering signals of xenobiotic exposure and effects are scarce. The present study employed a battery of biomarkers under field conditions to assess the environmental quality of this coastal zone. For this purpose, the activity of CYP 450, antioxidant enzymes, DNA damage, lipid peroxidation and lysosomal membrane were analysed in caged mussels and integrated using Factorial Analysis. A representation of estimated factor scores was performed in order to confirm the factor descriptions characterizing the studied areas. Biomarker responses indicated signals of mussels` impaired health during the monitoring, which pointed to the impact of different sources of contaminants in the water quality and identified critical areas. This integrated approach produced a rapid, sensitive and cost-effective assessment, which could be incorporated as a descriptor of environmental status in future coastal zones biomonitoring. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Abundance and composition of marine benthic communities have been relatively well studied in the SE Brazilian coast, but little is known on patterns controlling the distribution of their planktonic larval stages. A survey of larval abundance in the continental margin, using a Multi-Plankton Sampler, was conducted in a cross-shelf transect off Cabo Frio (23 degrees S and 42 degrees W) during a costal upwelling event. Hydrographic conditions were monitored through discrete CDT casts. Chlorophyll-a in the top 100 m of the water column was determined and changes in surface chlorophyll-a was estimated using SeaWiFS images. Based on the larval abundances and the meso-scale hydrodynamics scenario, our results suggest two different processes affecting larval distributions. High larval densities were found nearshore due to the upwelling event associated with high chlorophyll a and strong along shore current. On the continental slope, high larval abundance was associated with a clockwise rotating meander, which may have entrapped larvae from a region located further north (Cabo de Sao Tome, 22 degrees S and 41 degrees W). In mid-shelf areas, our data suggests that vertical migration may likely occur as a response to avoid offshore transport by upwelling plumes and/or cyclonic meanders. The hydrodynamic scenario observed in the study area has two distinct yet extremely important consequences: larval retention on food-rich upwelling areas and the broadening of the tropical domain to southernmost subtropical areas. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The coastal upwelling off Cabo Frio (SE Brazilian coast, SEBC) represents an exception to the world`s oceans since the majority of the upwelling areas are located in eastern boundary current systems. Cabo Frio represents an interesting area for investigation due to its tight physical-biological interaction and the importance of the region as a major fishery area in the SEBC. We analyzed a suite of lipid biomarkers to apportion the main sources of organic matter in surface sediments of the continental shelf off Cabo Frio, comparing the area to non-upwelling regions off the SEBC (shelf break off Cabo Frio and continental shelf off Ubatuba). During spring and summer (the upwelling period), diatoms are probably the major sources of polyunsaturated fatty acids (PUFAs) and C-28 sterols in surface sediments from Cabo Frio continental shelf. Sediments sampled in winter showed, in contrast, lower relative abundance of PUFAs and higher stanol/stenol ratio values. In deeper regions off Cabo Frio, elevated concentrations of alkenones, 24-methylcholest-5,22E-dien-3 beta-ol and 24-ethylcholest-5-en-3 beta-ol during the spring may be produced by prymnesiophytes or cryptophytes and cyanobacteria, respectively. In Ubatuba, the C-27 and C-28 sterols are likely derived from omnivorous salps and nanoflagellates. At non-upwelling areas, despite the increase in biomarker concentrations during spring and summer, lower concentrations of PUFAs, phytol and algal sterols than in shelf areas off Cabo Frio suggest the importance of the upwelling system to the rapid transfer of organic carbon to surface sediments. Our results suggest that spatial and temporal variability in organic matter production and deposition merits consideration for constraining the carbon budgets in the coastal region off Cabo Frio. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We studied the temporal distribution and reproductive biology of marine podonids during two consecutive years off Ubatuba, southeast coast of Brazil. Podonid specimens and their eggs and embryos were counted, measured and classified into categories. Pseudevadne tergestina was the most abundant species, and was more abundant in surface layers, in warm seasons, when the water column was stratified because of bottom intrusions of the cold and nutrient-rich South Atlantic Central Water (SACW) onto the inner shelf. Evadne spinifera had a similar temporal and vertical distribution, but with lower abundance and frequency. Pleopis schmackeri did not show a clear seasonal distribution, but preferred bottom layers. Pleopis polyphemoides and Podon intermedius occurred in low abundances, and only under SACW influence. Parthenogenetic females were dominant among all podonid species. Gamogenetic females of P. polyphemoides and P. intermedius were observed, but males of neither species occurred. This suggests that in tropical and subtropical regions, P. tergestina, E. spinifera and P. schmackeri reproduce through parthenogenesis during most of the year.
Resumo:
We examine Weddell Sea deep water mass distributions with respect to the results from three different model runs using the oceanic component of the National Center for Atmospheric Research Community Climate System Model (NCAR-CCSM). One run is inter-annually forced by corrected NCAR/NCEP fluxes, while the other two are forced with the annual cycle obtained from the same climatology. One of the latter runs includes an interactive sea-ice model. Optimum Multiparameter analysis is applied to separate the deep water masses in the Greenwich Meridian section (into the Weddell Sea only) to measure the degree of realism obtained in the simulations. First, we describe the distribution of the simulated deep water masses using observed water type indices. Since the observed indices do not provide an acceptable representation of the Weddell Sea deep water masses as expected, they are specifically adjusted for each simulation. Differences among the water masses` representations in the three simulations are quantified through their root-mean-square differences. Results point out the need for better representation (and inclusion) of ice-related processes in order to improve the oceanic characteristics and variability of dense Southern Ocean water masses in the outputs of the NCAR-CCSM model, and probably in other ocean and climate models.
Resumo:
Estuarine hydrodynamics is a key factor in the definition of the filtering capacity of an estuary and results from the interaction of the processes that control the inlet morphodynamics and those that are acting in the mixing of the water in the estuary. The hydrodynamics and suspended sediment transport in the Cambori estuary were assessed by two field campaigns conducted in 1998 that covered both neap and spring tide conditions. The period measured represents the estuarine hydrodynamics and sediment transport prior to the construction of the jetty in 2003 and provides important background information for the Cambori estuary. Each field campaign covered two complete tidal cycles with hourly measurements of currents, salinity, suspended sediment concentration and water level. Results show that the Cambori estuary is partially mixed with the vertical structure varying as a function of the tidal range and tidal phase. The dynamic estuarine structure can be balanced between the stabilizing effects generated by the vertical density gradient, which produces buoyancy and stratification flows, and the turbulent effects generated by the vertical velocity gradient that generates vertical mixing. The main sediment source for the water column are the bottom sediments, periodically resuspended by the tidal currents. The advective salt and suspended sediment transport was different between neap and spring tides, being more complex at spring tide. The river discharge term was important under both tidal conditions. The tidal correlation term was also important, being dominant in the suspended sediment transport during the spring tide. The gravitational circulation and Stokes drift played a secondary role in the estuarine transport processes.
Resumo:
Stable isotopes, tritium, radium isotopes, radon, trace elements and nutrients data were collected during two sampling campaigns in the Ubatuba coastal area (south-eastern Brazil) with the aim of investigating submarine groundwater discharge (SGD) in the region. The isotopic composition (delta D, delta(18)O, (3)H) of submarine waters was characterised by significant variability and heavy isotope enrichment. The stable isotopes and tritium data showed good separation of groundwater and seawater groups. The contribution of groundwater in submarine waters varied from a few % to 17%. Spatial distribution of (222)Rn activity concentration in surface seawater revealed changes between 50 and 200 Bq m(-3) which were in opposite relationship with observed salinities. Time series measurements of (222)Rn activity concentration in Flamengo Bay (from 1 to 5 kBq m(-3)), obtained by in situ underwater gamma-spectrometry showed a negative correlation between the (222)Rn activity concentration and tide/salinity. This may be caused by sea level changes as tide effects induce variations of hydraulic gradients, which increase (222)Rn concentration during lower sea level, and opposite, during high tides where the (222)Rn activity concentration is smaller. The estimated SGD fluxes varied during 22-26 November between 8 and 40 cm d(-1), with an average value of 21 cm d(-1) (the unit is cm(3)/cm(2) per day). The radium isotopes and nutrient data showed scattered distributions with offshore distance and salinity. which implies that in a complex coast with many small bays and islands, the area has been influenced by local currents and groundwater-seawater mixing. SGD in the Ubatuba area is fed by coastal contaminated groundwater and re-circulated seawater (with small admixtures of groundwater). which claims for potential environmental concern with implications on the management of freshwater resources in the region. (C) 2007 Elsevier Ltd. All rights reserved.
Photo-induced toxicity of anthracene in the Antarctic shallow water amphipod, Gondogeneia antarctica
Resumo:
The photo-induced toxicity of anthracene was investigated as the mortality in Antarctic shallow water amphipod, Gondogeneia antarctica, at different concentrations of anthracene and different periods of exposure to natural sunlight and artificial UVA and UVB radiations. When exposed to natural sunlight, animals contaminated in the dark and placed in clean water or in anthracene solutions showed different degrees of mortality, dose-time dependent. Effects were even more evident when these animals were exposed to artificial UVA or UVB radiations. Depuration seemed to be a slow process. The effects of UV radiation and anthracene alone and the effects of the interactions of these two stressors implied that solar radiation is an important parameter that deserves consideration in the environmental assessment of polycyclic aromatic hydrocarbons in Antarctic coastal waters. G. antarctica proved to be a good bioindicator for the phototoxicity of anthracene in Antarctic shallow waters.
Resumo:
The Camamu Bay (CMB) is located on the narrowest shelf along the South American coastline and close to the formation of two major Western Boundary Currents (WBC), the Brazil/North Brazil Current (BC/NBC). These WBC flow close to the shelf break/slope region and are expected to interact with the shelf currents due to the narrowness of the shelf. The shelf circulation is investigated in terms of current variability based on an original data set covering the 2002-2003 austral summer and the 2003 austral autumn. The Results show that the currents at the shelf are mainly wind driven, experiencing a complete reversal between seasons due to a similar change in the wind field. Currents at the inner-shelf have a polarized nature, with the alongshore velocity mostly driven by forcings at the sub-inertial frequency band and the cross-shore velocity mainly supra-inertially forced, with the tidal currents playing an important role at this direction. The contribution of the forcing mechanisms at the mid-shelf changes between seasons. During the summer, forcings in the two frequency bands are important to drive the currents with a similar contribution of the tidal currents. On the other hand, during the autumn season, the alongshore velocity is mostly driven by sub-inertial forcings and tidally driven currents still remain important in both directions. Moreover, during the autumn when the stratification is weaker, the response of the shelf currents to the wind forcing presents a barotropic signature. The meso-scale processes related to the WBC flowing at the shelf/slope region also affect the circulation within the shelf, which contribute to cause significant current reversals during the autumn season. Currents at the shelf-estuary connection are clearly supra-inertially forced with the tidal currents playing a key role in the generation of the along-channel velocities. The sub-inertial forcings at this location act mainly to drive the weak ebb currents which were highly correlated with both local and remote wind forcing during the summer season. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this work is to use GIS integration data to characterize sedimentary processes in a SubTropical lagoon environment. The study area was the Canan,ia Inlet estuary in the southeastern section of the Canan,ia Lagoon Estuarine System (CLES), state of So Paulo, Brazil (25A degrees 03'S/47A degrees 53'W). The area is formed by the confluence of two estuarine channels forming a bay-shaped water body locally called "Trapand, Bay". The region is surrounded by one of the most preserved tracts of Atlantic Rain Forest in Southwestern Brazil and presents well-developed mangroves and marshes. In this study a methodology was developed using integrated a GIS database based on bottom sediment parameters, geomorphological data, remote sensing images, Hidrodynamical Modeling data and geophysical parameters. The sediment grain size parameters and the bottom morphology of the lagoon were also used to develop models of net sediment transport pathways. It was possible to observe that the sediment transport vectors based on the grain size model had a good correlation with the transport model based on the bottom topography features and Hydrodynamic model, especially in areas with stronger energetic conditions, with a minor contribution of finer sediments. This relation is somewhat less evident near shallower banks and depositional features. In these regions the organic matter contents in the sediments was a good complementary tool for inferring the hydrodynamic and depositional conditions (i.e. primary productivity, sedimentation rates, sources, oxi-reduction rates).
Resumo:
The paleoclimate version of the National Center for Atmospheric Research Community Climate System Model version 3 (NCAR-CCSM3) is used to analyze changes in the water formation rates in the Atlantic, Pacific, and Indian Oceans for the Last Glacial Maximum (LGM), mid-Holocene (MH) and pre-industrial (PI) control climate. During the MH, CCSM3 exhibits a north-south asymmetric response of intermediate water subduction changes in the Atlantic Ocean, with a reduction of 2 Sv in the North Atlantic and an increase of 2 Sv in the South Atlantic relative to PI. During the LGM, there is increased formation of intermediate water and a more stagnant deep ocean in the North Pacific. The production of North Atlantic Deep Water (NADW) is significantly weakened. The NADW is replaced in large extent by enhanced Antarctic Intermediate Water (AAIW), Glacial North Atlantic Intermediate Water (GNAIW), and also by an intensified of Antarctic Bottom Water (AABW), with the latter being a response to the enhanced salinity and ice formation around Antarctica. Most of the LGM intermediate/mode water is formed at 27.4 < sigma(theta) < 29.0 kg/m(3), while for the MH and PI most of the subduction transport occurs at 26.5 < sigma(theta) < 27.4 kg/m(3). The simulated LGM Southern Hemisphere winds are more intense by 0.2-0.4 dyne/cm(2). Consequently, increased Ekman transport drives the production of intermediate water (low salinity) at a larger rate and at higher densities when compared to the other climatic periods.