981 resultados para 620503 Forestry


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The average daily intake of folate, one of the B vitamins, falls below recommendations among the Finnish population. Bread and cereals are the main sources of folate, rye being the most significant single source. Processing is a prerequisite for the consumption of whole grain rye; however, little is known about the effect of processing on folates. Moreover, data on the bioavailability of endogenous cereal folates are scarce. The aim of this study was to examine the variation in as well as the effect of fermentation, germination, and thermal processes on folate contents in rye. Bioavailability of endogenous rye folates was investigated in a four-week human intervention study. One of the objectives throughout the work was to optimise and evaluate analytical methods for determining folate contents in cereals. Affinity chromatographic purification followed by high-performance liquid chromatography (HPLC) was a suitable method for analysing cereal products for folate vitamers, and microbiological assay with Lactobacillus rhamnosus reliably quantified the total folate. However, HPLC gave approximately 30% lower results than the microbiological assay. The folate content of rye was high and could be further increased by targeted processing. The vitamer distribution of whole grain rye was characterised by a large proportion of formylated vitamers followed by 5-methyltetrahydrofolate. In sourdough fermentation of rye, the studied yeasts synthesized and lactic acid bacteria mainly depleted folate. Two endogenous bacteria isolated from rye flour were found to produce folate during fermentation. Inclusion of baker s yeast in sourdough fermentation raised the folate level so that the bread could contain more folate than the flour it was made of. Germination markedly increased the folate content of rye, with particularly high folate concentrations in hypocotylar roots. Thermal treatments caused significant folate losses but the preceding germination compensated well for the losses. In the bioavailability study, moderate amounts of endogenous folates in the form of different rye products and orange juice incorporated in the diet improved the folate status among healthy adults. Endogenous folates from rye and orange juice showed similar bioavailability to folic acid from fortified white bread. In brief, it was shown that the folate content of rye can be enhanced manifold by optimising and combining food processing techniques. This offers some practical means to increase the daily intake of folate in a bioavailable form.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increased interest in the cholesterol-lowering effect of plant sterols has led to development of plant sterol-enriched foods. When products are enriched, the safety of the added components must be evaluated. In the case of plant sterols, oxidation is the reaction of main concern. In vitro studies have indicated that cholesterol oxides may have harmful effects. Due their structural similarity, plant sterol oxidation products may have similar health implications. This study concentrated on developing high-performance liquid chromatography (HPLC) methods that enable the investigation of formation of both primary and secondary oxidation products and thus can be used for oxidation mechanism studies of plant sterols. The applicability of the methods for following the oxidation reactions of plant sterols was evaluated by using oxidized stigmasterol and sterol mixture as model samples. An HPLC method with ultraviolet and fluorescence detection (HPLC-UV-FL) was developed. It allowed the specific detection of hydroperoxides with FL detection after post-column reagent addition. The formation of primary and secondary oxidation products and amount of unoxidized sterol could be followed by using UV detection. With the HPLC-UV-FL method, separation between oxides was essential and oxides of only one plant sterol could be quantified in one run. Quantification with UV can lead to inaccuracy of the results since the number of double bonds had effect on the UV absorbance. In the case of liquid chromatography-mass spectrometry (LC-MS), separation of oxides with different functionalities was important because some oxides of the same sterol have similar molecular weight and moreover epimers have similar fragmentation behaviour. On the other hand, coelution of different plant sterol oxides with the same functional group was acceptable since they differ in molecular weights. Results revealed that all studied plant sterols and cholesterol seem to have similar fragmentation behaviour, with only relative ion abundances being slightly different. The major advantage of MS detection coupled with LC separation is the capability to analyse totally or partly coeluting analytes if these have different molecular weights. The HPLC-UV-FL and LC-MS methods were demonstrated to be suitable for studying the photo-oxidation and thermo-oxidation reactions of plant sterols. The HPLC-UV-FL method was able to show different formation rates of hydroperoxides during photo-oxidation. The method also confirmed that plant sterols have similar photo-oxidation behaviour to cholesterol. When thermo-oxidation of plant sterols was investigated by HPLC-UV-FL and LC-MS, the results revealed that the formation and decomposition of individual hydroperoxides and secondary oxidation products could be studied. The methods used revealed that all of the plant sterols had similar thermo-oxidation behaviour when compared with each other, and the predominant reactions and oxidation rates were temperature dependent. Overall, these findings showed that with these LC methods the oxidation mechanisms of plant sterols can be examined in detail, including the formation and degradation of individual hydroperoxides and secondary oxidation products, with less sample pretreatment and without derivatization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diet is a major player in the maintenance of health and onset of many diseases of public health importance. The food choice is known to be largely influenced by sensory preferences. However, in many cases it is unclear whether these preferences and dietary behaviors are innate or acquired. The aim of this thesis work was to study the extent to which the individual differences in dietary responses, especially in liking for sweet taste, are influenced by genetic factors. Several traits measuring the responses to sweetness and other dietary variables were applied in four studies: in British (TwinsUK) and Finnish (FinnTwin12 and FinnTwin16) twin studies and in a Finnish migraine family study. All the subjects were adults and they participated in chemosensory measurements (taste and smell tests) and filled in food behavior questionnaires. Further, it was studied, whether the correlations among the variables are mediated by genetic or environmental factors and where in the genome the genes influencing the heritable traits are located. A study of young adult Finnish twins (FinnTwin16, n=4388) revealed that around 40% of the food use is attributable to genetic factors and that the common, childhood environment does not affect the food use even shortly after moving from the parents home. Both the family study (n=146) and the twin studies (British twins, n=663) showed that around half of the variation in the liking for sweetness is inherited. The same result was obtained both by the chemosensory measurements (heritability 41-49%) and the questionnaire variables (heritability 31-54%). By contrast, the intensity perception of sweetness or the responses to saltiness were not influenced by genetic factors. Further, a locus influencing the use-frequency of sweet foods was identified on chromosome 16p. A closer examination of the relationships among the variables based on 663 British twins revealed that several genetic and environmental correlations exist among the different measures of liking for sweetness. However, these correlations were not very strong (range 0.06-0.55) implying that the instruments used measure slightly different aspects of the phenomenon. In addition, the assessment of the associations among responses to fatty foods, dieting behaviors, and body mass index in twin populations (TwinsUK n=1027 and FinnTwin12 n=299) showed that the dieting behaviors (cognitive restraint, uncontrolled eating, and emotional eating) mediate the relationship between obesity and diet. In conclusion, the work increased the understanding of the background variables of human eating behavior. Genetic effects were shown to underlie the variation of many dietary traits, such as liking for sweet taste, use of sweet foods, and dieting behaviors. However, the responses to salty taste were shown to be mainly determined by environmental factors and thus should more easily be modifiable by dietary education, exposure, and learning than sweet taste preferences. Although additional studies are needed to characterize the genetic element located on chromosome 16 that influences the use-frequency of sweet foods, the results underline the importance of inherited factors on human eating behavior.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis examines protein behaviours that occur during cereal fermentations. The focus is on the prolamin degradation in sourdoughs. The thesis also looks at what happens to the oat globulins during an oat bran acidification process. The cereal prolamins are unique proteins in many respects. The wheat prolamins (glutenins and gliadins) are responsible for the formation of the gluten that provides the viscoelastic properties to wheat doughs whereas the rye prolamins (secalins) are unable to develop gluten-like structures. In addition, many baking technological features, such as flavour, shelf-life and dough properties are affected by the protein degradation that might occur during processing. On the other hand, the prolamins contain protein structures that are harmful to gluten sensitive people. It is thus evident that the degradation of the prolamins in sourdough processes may be approached from various aspects. This thesis describes some of these approaches. Four different cereal fermentations were carried out. Wheat sourdough (WSD) and rye sourdough (RSD) fermentations represented traditional sourdoughs. A germinated-wheat sourdough (GWSD) was a novel sourdough type that was prepared using germinated wheat grains that had high and diverse proteolytic activities. The oat bran fermentation (OBF) represented a fermentation system that lacked functional cereal proteases. The high molecular weight glutenins and rye secalins were degraded during the WSD and RSD fermentations, respectively. It was noteworthy that in WSD only a very limited degradation of the gliadins occurred. The gliadins were, however, hydrolysed very extensively during the GWSD fermentation. No protein degradation was observable in the OBF system. Instead the acidification altered the solubility of the oat globulins and this finally led to their aggregation. This thesis confirms that the endogenous proteases of cereals hydrolyse cereal prolamins in sourdoughs. The thesis also shows that the proteolytic activity of the used cereal raw material determines the extent of proteolysis that occurs in sourdough. This means that bakers may adjust the protein degradation in their sourdoughs by selecting the raw material based on its proteolytic activity. The thesis also demonstrates that by using germinated grains, with high and diverse proteolytic activity in sourdough preparations, the prolamins can be extensively degraded. Whether such highly proteolytic food technology could be used to manufacture new gluten-free cereal-based products for gluten sensitive people remains to be solved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Standards have been placed to regulate the microbial and preservative contents to assure that foods are safe to the consumer. In a case of a food-related disease outbreak, it is crucial to be able to detect and identify quickly and accurately the cause of the disease. In addition, for every day control of food microbial and preservative contents, the detection methods must be easily performed for numerous food samples. In this present study, quicker alternative methods were studied for identification of bacteria by DNA fingerprinting. A flow cytometry method was developed as an alternative to pulsed-field gel electrophoresis, the golden method . DNA fragment sizing by an ultrasensitive flow cytometer was able to discriminate species and strains in a reproducible and comparable manner to pulsed-field gel electrophoresis. This new method was hundreds times faster and 200,000 times more sensitive. Additionally, another DNA fingerprinting identification method was developed based on single-enzyme amplified fragment length polymorphism (SE-AFLP). This method allowed the differentiation of genera, species, and strains of pathogenic bacteria of Bacilli, Staphylococci, Yersinia, and Escherichia coli. These fingerprinting patterns obtained by SE-AFLP were simpler and easier to analyze than those by the traditional amplified fragment length polymorphism by double enzyme digestion. Nisin (E234) is added as a preservative to different types of foods, especially dairy products, around the world. Various detection methods exist for nisin, but they lack in sensitivity, speed or specificity. In this present study, a sensitive nisin-induced green fluorescent protein (GFPuv) bioassay was developed using the Lactococcus lactis two-component signal system NisRK and the nisin-inducible nisA promoter. The bioassay was extremely sensitive with detection limit of 10 pg/ml in culture supernatant. In addition, it was compatible for quantification from various food matrices, such as milk, salad dressings, processed cheese, liquid eggs, and canned tomatoes. Wine has good antimicrobial properties due to its alcohol concentration, low pH, and organic content and therefore often assumed to be microbially safe to consume. Another aim of this thesis was to study the microbiota of wines returned by customers complaining of food-poisoning symptoms. By partial 16S rRNA gene sequence analysis, ribotyping, and boar spermatozoa motility assay, it was identified that one of the wines contained a Bacillus simplex BAC91, which produced a heat-stable substance toxic to the mitochondria of sperm cells. The antibacterial activity of wine was tested on the vegetative cells and spores of B. simplex BAC91, B. cereus type strain ATCC 14579 and cereulide-producing B. cereus F4810/72. Although the vegetative cells and spores of B. simplex BAC91 were sensitive to the antimicrobial effects of wine, the spores of B. cereus strains ATCC 14579 and F4810/72 stayed viable for at least 4 months. According to these results, Bacillus spp., more specifically spores, can be a possible risk to the wine consumer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microbes have a decisive role in the barley-malt-beer chain. A major goal of this thesis was to study the relationships between microbial communities and germinating grains during malting. Furthermore, the study provided a basis for tailoring of malt properties with natural, malt-derived microbes. The malting ecosystem is a dynamic process, exhibiting continous change. The first hours of steeping and kilning were the most important steps in the process with regard to microbiological quality. The microbial communities consisting of various types of bacteria, yeasts and filamentous fungi formed complex biofilms in barley tissues and were well-protected. Inhibition of one microbial population within the complex ecosystem led to an increase of non-suppressed populations, which must be taken into account because a shift in microbial community dynamics may be undesirable. Both bacterial and fungal communities should be monitored simultaneously. Using different molecular approaches we showed that the diversity of microbes in the malting ecosystem was greater than expected. Even some new microbial groups were found in the malting ecosystem. Suppression of Gram-negative bacteria during steeping was advanategous for grain germination and malt brewhouse performance. Fungal communities including both filamentous fungi and yeasts significantly contributed to the production of microbial beta-glucanases and xylanases, and were also involved in proteolysis. Well-characterized lactic acid bacteria (Lactobacillus plantarum VTT E-78076 and Pediococcus pentosaceus VTT E-90390) proved to be an effective way of balancing the microbial communities in malting. Furthermore, they had positive effects on malt characteristics and notably improved wort separation. Previously the significance of yeasts in the malting ecosystem has been largely underestimated. This study showed that yeast community was an important part of the industrial malting ecosystem. Yeasts produced extracellular hydrolytic enzymes with a potentially positive contribution to malt processability. Furthermore, several yeasts showed strong antagonistic activity against field and storage moulds. Addition of a selected yeast culture (Pichia anomala VTT C-04565) into steeping restricted Fusarium growth and hydrophobin production and thus prevented beer gushing. Addition of P. anomala C565 into steeping water tended to retard wort filtration, but the filtration was improved when the yeast culture was combined with L. plantarum E76. The combination of different microbial cultures offers a possibility to use ther different properties, thus making the system more robust. Improved understanding of complex microbial communities and their role in malting enables a more controlled process management and the production of high quality malt with tailored properties