985 resultados para 5-ht4 Receptors
Resumo:
Background and purpose: Chemokine receptors CXCR1 and CXCR2 may mediate influx of neutrophils in models of acute and chronic inflammation. The potential benefits of oral administration of a CXCR1/2 inhibitor, DF 2162, in adjuvant-induced polyarthritis (AIA) were investigated. Experimental approach: A model of AIA in rats was used to compare the therapeutic effects of the treatment with DF2162, anti-TNF or anti-CINC-1 antibodies on joint inflammation and local production of cytokines and chemokines. Key results: DF2162 prevented chemotaxis of rat and human neutrophils induced by chemokines acting on CXCR1/2. DF2162 was orally bioavailable and metabolized to two major metabolites. Only metabolite 1 retained CXCR1/2 blocking activity. Treatment with DF2162 ( 15 mg kg(-1), twice daily) or metabolite 1, but not metabolite 2, starting on day 10 after arthritis induction diminished histological score, the increase in paw volume, neutrophil influx and local production of TNF, IL-1 beta, CCL2 and CCL5. The effects of DF2162 were similar to those of anti-TNF, and more effective than those of anti-CINC-1, antibodies. DF2162 prevented disease progression even when started 13 days after arthritis induction. Conclusions and implications: DF 2162, a novel orally-active non-competitive allosteric inhibitor of CXCR1 and CXCR2, significantly ameliorates AIA in rats, an effect quantitatively and qualitatively similar to those of anti-TNF antibody treatment. These findings highlight the contribution of CXCR2 in the pathophysiology of AIA and suggest that blockade of CXCR1/2 may be a valid therapeutic target for further studies aiming at the development of new drugs for treatment of rheumatoid arthritis.
Resumo:
Aripiprazole is an atypical antipsychotic that acts as a partial agonist at the dopamine D-2 receptor. It has been mainly investigated in dopamine-based models of schizophrenia, while its effects on glutamate-based paradigms have remained to be further characterized. Due to its unique mechanism of action, aripiprazole has also been considered as a replacement medication for psychostimulant abuse. Thus, in the present study we tested the hypothesis that aripiprazole would prevent the motor hyperactivity induced by psychostimulant and psychotomimetic drugs that act either by dopaminergic or glutamatergic mechanisms. Male Swiss mice received injections of aripiprazole (0.1-1 mg/kg) followed by drugs that enhance the dopamine-mediated neurotransmission, amphetamine (3 mg/kg) or cocaine (5 mg/kg), or by glutamate NMDA-receptor antagonists, ketamine (60 mg/kg) or MK-801 (0.4 mg/kg). Independent groups also received aripiprazole (0.1-1 mg/kg) or haloperidol (0.5 mg/kg) and were tested for catalepsy. All doses of aripiprazole were effective in preventing the motor stimulant effects of amphetamine and cocaine. Moreover, the higher dose also prevented the effects of ketamine and MK-801. The present study reports the effects of aripiprazole in dopaminergic and glutamatergic models predictive of antipsychotic activity, suggesting that both may be useful for screening novel partial agonists with antipsychotic activity. It also shows that aripiprazole may prevent the acute effects of psychostimulant drugs without significant motor impairment. C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) is an endogenous ligand of peroxisome proliferator-activated receptors gamma (PPAR-gamma) and is now recognized as a potent anti-inflammatory mediator. However, information regarding the influence of 15d-PGJ(2) on inflammatory pain is still unknown. In this study, we evaluated the effect of 15d-PGJ(2) upon inflammatory hypernociception and the mechanisms involved in this effect. We observed that intraplantar administration of 15d-PGJ(2) (30-300 ng/paw) inhibits the mechanical hypernociception induced by both carrageenan (100 mu g/paw) and the directly acting hypernociceptive mediator, prostaglandin E-2 (PGE(2)). Moreover, 15d-PGJ(2) [100 ng/temporomandibular joint (TMJ)] inhibits formalininduced TMJ hypernociception. On the other hand, the direct administration of 15d-PGJ(2) into the dorsal root ganglion was ineffective in blocking PGE(2)- induced hypernociception. In addition, the 15d-PGJ(2) antinociceptive effect was enhanced by the increase of macrophage population in paw tissue due to local injection of thioglycollate, suggesting the involvement of these cells on the 15d-PGJ(2)-antinociceptive effect. Moreover, the antinociceptive effect of 15d-PGJ(2) was also blocked by naloxone and by the PPAR-gamma antagonist 2-chloro-5-nitro-N-phenylbenzamide (GW9662), suggesting the involvement of peripheral opioids and PPAR-gamma receptor in the process. Similar to opioids, the 15d-PGJ(2) antinociceptive action depends on the nitric oxide/cGMP/protein kinase G (PKG)/K-ATP(+) channel pathway because it was prevented by the pretreatment with the inhibitors of nitric-oxide synthase (N-G-monomethyl-L-arginine acetate), guanylate cyclase] 1H-(1,2,4)-oxadiazolo(4,2-alpha) quinoxalin-1- one[, PKG [indolo[2,3-a]pyrrolo[3,4-c]carbazole aglycone (KT5823)], or with the ATP-sensitive potassium channel blocker glibenclamide. Taken together, these results demonstrate for the first time that 15d-PGJ(2) inhibits inflammatory hypernociception via PPAR-gamma activation. This effect seems to be dependent on endogenous opioids and local macrophages.
Resumo:
Rationale: The reduction of neutrophil migration to the bacterial focus is associated with poor outcome in sepsis. Objectives: The objective of this study was to identify soluble substances in the blood of septic mice that inhibit neutrophil migration. Methods: A pool of serum obtained from mice 2 hours after the induction of severe sepsis by cecal ligation and puncture inhibited the neutrophil migration. The proteins with inhibitory activity on neutrophil migration were isolated by Blue-Sepharose chromatography, high-performance liquid chromatography, and electrophoresis, and identified by mass spectrometry. Measurements and Main Results: Hemopexin was identified as the serum component responsible for the inhibition of neutrophil migration. In sepsis, the pretreatment of wild-type mice with hemopexin inhibited neutrophil migration to the focus of infection and decreased the survival rate from 87.5 to 50.0%. Hemopexin-null mice subjected to severe sepsis presented normal neutrophil migration, low bacteremia, and an improvement of 40% in survival rate. Moreover, hemopexin inhibited the neutrophil chemotaxis response evoked by C5a or macrophage inflammatory protein-2 and induced a reduction of CXCR2 and L-selectin as well as the up-regulation of CD11b expression in neutrophil membranes. The inhibitory effect of hemopexin on neutrophil chemotaxis was prevented by serine protease inhibitors or ATP. In addition, serum levels of ATP were decreased 2 hours after severe sepsis. Conclusions: These data demonstrate for the first time the inhibitory role of hemopexin in neutrophil migration during sepsis and suggest that the therapeutic inhibition of hemopexin or its protease activity could improve neutrophil migration to the focus of infection and survival in sepsis.
Resumo:
Dynamic exercise evokes sustained blood pressure and heart rate (HR) increases. Although it is well accepted that there is a CNS mediation of cardiovascular adjustments during dynamic exercise, information on the role of specific CNS structures is still limited. The bed nucleus of the stria terminalis (BST) is involved in exercise-evoked cardiovascular responses in rats. However, the specific neurotransmitter involved in BST-related modulation of cardiovascular responses to dynamic exercise is still unclear. In the present study, we investigated the role of local BST adrenoceptors in the cardiovascular responses evoked when rats are submitted to an acute bout of exercise on a rodent treadmill. We observed that bilateral microinjection of the selective alpha 1-adrenoceptor antagonist WB4101 into the BST enhanced the HR increase evoked by dynamic exercise without affecting the mean arterial pressure (MAP) increase. Bilateral microinjection of the selective alpha 2-adrenoceptor antagonist RX821002 reduced exercise-evoked pressor response without changing the tachycardiac response. BST pretreatment with the nonselective beta-adrenoceptor antagonist propranolol did not affect exercise-related cardiovascular responses. BST treatment with either WB4101 or RX821002 did not affect motor performance in the open-field test, which indicates that effects of BST adrenoceptor antagonism in exercise-evoked cardiovascular responses were not due to changes in motor activity. The present findings are the first evidence showing the involvement of CNS adrenoceptors in cardiovascular responses during dynamic exercise. Our results indicate an inhibitory influence of BST alpha 1-adrenoceptor on the exercise-evoked HR response. Data also point to a facilitatory role played by the activation of BST alpha 2-adrenoceptor on the pressor response to dynamic exercise. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Rationale Sepsis is defined as a systemic inflammatory response to infection, which in its severe form is associated with multiple organ dysfunction syndrome (MODS). The precise mechanisms by Which MODS develops remain unclear. Neutrophils have a pivotal role in the defense against infections; however, overwhelming activation of neutrophils is known to elicit tissue damage. Objectives: We investigated the role of the chemokine receptor CCR2 in driving neutrophil infiltration and eliciting tissue damage in remote organs during sepsis. Methods: Sepsis was induced in wild-type mice treated with CCR2 antagonist (RS504393) or CCR2(-/-) mice by cecal ligation and puncture (CLP) model. Neutrophil infiltration into the organs was measured by myeloperoxidase activity and fluorescence-activated cell sorter. CCR2 expression and chemotaxis were determined in neutrophils stimulated with Toll-like receptor agonists or isolated from septic mice and patients. Measurements and Main Results: CCR2 expression and responsiveness to its ligands was induced in circulating neutrophils during CLP-induced sepsis by a mechanism dependent on Toll-like receptor/nuclear factor-kappa B pathway. Genetic or pharmacologic inhibition of CCR2 protected mice from CLP-induced mortality. This protection was associated with lower infiltration of neutrophils into the lungs, heart, and kidneys and reduced serum biochemical indicators of organ injury and dysfunction. Importantly, neutrophils from septic patients express high levels of CCR2, and the severity of patient illness correlated positively with increasing neutrophil chemotaxis to CCR2 ligands. Conclusions: Collectively, these data identify CCR2 as a key receptor that drives the inappropriate infiltration of neutrophils into remote organs during sepsis. Therefore, CCR2 blockade is a novel potential therapeutic target for treatment of sepsis-induced MODS.
Resumo:
Gastrointestinal mucositis is a common side effect of cancer chemotherapy. Platelet-activating factor (PAF) is produced during gut inflammation. There is no evidence that PAF participates in antineoplastic-induced intestinal mucositis. This study evaluated the role of PAF in 5-fluorouracil (5-FU)-induced intestinal mucositis using a pharmacological approach and PAF receptor knockout mice (PAFR(-/-)). Wild-type mice or PAFR(-/-) mice were treated with 5-FU (450 mg/kg, i.p.). Other mice were treated with saline or BN52021 (20 mg/kg, s.c.), an antagonist of the PAF receptor, once daily followed by 5-FU administration. After the third day of treatment, animals were sacrificed and tissue samples from the duodenum were removed for morphologic evaluation. In addition, myeloperoxidase activity and the cytokine concentration were measured. 5-FU treatment decreased the duodenal villus height/crypt depth ratio, increased MPO activity, and increased the concentration of TNF-alpha, IL-1 beta and KC in comparison with saline-treated animals. In PAFR(-/-) mice and PAFR antagonist-treated mice, 5-FU-dependent intestinal damage was reduced and a decrease in duodenal villus height/crypt depth ratio was attenuated. However, the 5-FU-dependent increase in duodenum MPO activity was not affected. Without PAFR activation, 5-FU treatment did not increase the TNF-alpha, IL-1 beta and KC concentration. In conclusion, our study establishes the role of PAFR activation in 5-FU-induced intestinal mucositis. This study implicates treatment with PAFR antagonists as novel therapeutic strategy for this condition.
Resumo:
The intracellular bacterium Legionella pneumophila induces a severe form of pneumonia called Legionnaires diseases, which is characterized by a strong neutrophil (NE) infiltrate to the lungs of infected individuals. Although the participation of pattern recognition receptors, such as Toll-like receptors, was recently demonstrated, there is no information on the role of nod-like receptors (NLRs) for bacterial recognition in vivo and for NE recruitment to the lungs. Here, we employed a murine model of Legionnaires disease to evaluate host and bacterial factors involved in NE recruitment to the mice lungs. We found that L. pneumophila type four secretion system, known as Dot/Icm, was required for NE recruitment as dot/icm mutants fail to trigger NE recruitment in a process independent of bacterial multiplication. By using mice deficient for Nod1, Nod2, and Rip2, we found that these receptors accounted for NE recruitment to the lungs of infected mice. In addition, Rip2-dependent responses were important for cytokine production and bacterial clearance. Collectively, these studies show that Nod1, Nod2, and Rip2 account for generation of innate immune responses in vivo, which are important for NE recruitment and bacterial clearance in a murine model of Legionnaires diseases. (C) 2010 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Resumo:
This study provides evidence supporting the idea that although inflammatory cells migration to the cardiac tissue is necessary to control the growth of Trypanosoma cruzi, the excessive influx of such cells during acute myocarditis may be deleterious to the host. Production of lipid mediators of inflammation like leukotrienes (LTs) along with cytokines and chemokines largely influences the severity of inflammatory injury in response to tissue parasitism. T cruzi infection in mice deficient in 5-lipoxygenase (5-LO), the enzyme responsible for the synthesis of LTs and other lipid inflammatory mediators, resulted in transiently increased parasitemia, and improved survival rate compared with WT mice. Myocardia from 5-LO(-/-) mice exhibited reduced inflammation, collagen deposition, and migration of CD4(+), CD8(+), and IFN-gamma-producer cells compared with WT littermates. Moreover, decreased amounts of TNF-alpha, IFN-gamma, and nitric oxide synthase were found in the hearts of 5-LO(-/-) mice. Interestingly, despite of early higher parasitic load, 5-LO(-/-) mice survived, and controlled T cruzi infection. These results show that efficient parasite clearance is possible in a context of moderate inflammatory response, as occurred in 5-LO(-/-) mice, in which reduced myocarditis protects the animals during T cruzi infection. (c) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
Sepsis is a systemic inflammatory condition following bacterial infection with a high mortality rate and limited therapeutic options(1,2). Here we show that interleukin-33 (IL-33) reduces mortality in mice with experimental sepsis from cecal ligation and puncture (CLP). IL-33-treated mice developed increased neutrophil influx into the peritoneal cavity and more efficient bacterial clearance than untreated mice. IL-33 reduced the systemic but not the local proinflammatory response, and it did not induce a T helper type 1 (T(H)1) to T(H)2 shift. The chemokine receptor CXCR2 is crucial for recruitment of neutrophils from the circulation to the site of infection(3). Activation of Toll-like receptors (TLRs) in neutrophils downregulates CXCR2 expression and impairs neutrophil migration(4). We show here that IL-33 prevents the downregulation of CXCR2 and inhibition of chemotaxis induced by the activation of TLR4 in mouse and human neutrophils. Furthermore, we show that IL-33 reverses the TLR4-induced reduction of CXCR2 expression in neutrophils via the inhibition of expression of G protein coupled receptor kinase-2 (GRK2), a serine-threonine protein kinase that induces internalization of chemokine receptors(5,6). Finally, we find that individuals who did not recover from sepsis had significantly more soluble ST2 (sST2, the decoy receptor of IL-33) than those who did recover. Together, our results indicate a previously undescribed mechanism of action of IL-33 and suggest a therapeutic potential of IL-33 in sepsis.
Resumo:
Acute restraint is an unavoidable stress situation that evokes marked and sustained cardiovascular changes, which are characterized by blood pressure and heart rate increases. In the present study, we tested the hypothesis that insular cortex mediates cardiovascular responses to acute restraint stress in rats. To that purpose, the insular cortex synaptic transmission was inhibited by bilateral microinjection of the nonselective synaptic blocker cobalt chloride (CoCl(2), 1 mM/100 nL). Insular cortex pretreatment with CoCl(2) decreased restraint-evoked pressor and tachycardiac responses, thus indicating an involvement of synapses within the insular cortex on the modulation of cardiovascular responses to restraint stress. The present results indicate that insular cortex synapses exert a facilitatory influence on blood pressure and HR increase evoked by acute restraint stress in rats. Crown Copyright (C) 2010 Published by Elsevier B.V. All rights reserved.
Resumo:
Although several pieces of evidence indicate that the endocannabinoid system modulates anxiety-like behaviors and stress adaptation, few studies have investigated the brain sites of these effects. The ventral hippocampus (VHC) has been related to anxiety behaviors and has a high expression of cannabinoid-1 (CBI) receptors. Moreover, endocannabinoid signaling in the hippocampus is proposed to regulate stress adaptation. In the present study we investigated the role of previous stressful experience on the effects of AM404, an anandamide uptake inhibitor, microinjected into the VHC of rats submitted to the elevated plus maze (EPM), a widely used animal model of anxiety. Stressed animals were forced restrained for two h 24 h before the test. AM404 (5-50 pmol) microinjection promoted an anxiogenic-like effect in non-stressed rats but decreased anxiety in stressed animals. AM251 (0.01 to 1000 pmol), a CBI receptor antagonist, failed to change behavior in the EPM over a wide dose range but prevented the effects of AM404. Anxiolytic-like effects of AM404 (5 pmol) intra-VHC injection were also observed in the Vogel conflict test (VCT), another model of anxiety that involves previous exposure to stressful situations (48 h of water deprivation). These results suggest that facilitation of endocannabinoid system neurotransmission in the ventral hippocampus modulates anxiety-like behaviors and that this effect depends on previous stress experience. (C) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Matsumoto T, Tostes RC, Webb RC. Uridine adenosine tetraphosphate-induced contraction is increased in renal but not pulmonary arteries from DOCA-salt hypertensive rats. Am J Physiol Heart Circ Physiol 301: H409-H417, 2011. First published May 6, 2011; doi:10.1152/ajpheart.00084.2011.-Uridine adenosine tetraphosphate (Up(4)A) was reported as a novel endothelium-derived contracting factor. Up(4)A contains both purine and pyrimidine moieties, which activate purinergic (P2)X and P2Y receptors. However, alterations in the vasoconstrictor responses to Up(4)A in hypertensive states remain unclear. The present study examined the effects of Up(4)A on contraction of isolated renal arteries (RA) and pulmonary arteries (PA) from DOCA-salt rats using isometric tension recording. RA from DOCA-salt rats exhibited increased contraction to Up(4)A versus arteries from control uninephrectomized rats in the absence and presence of N(G)-nitro-L-arginine (nitric oxide synthase inhibitor). On the other hand, the Up(4)A-induced contraction in PA was similar between the two groups. Up(4)A-induced contraction was inhibited by suramin (nonselective P2 antagonist) but not by diinosine pentaphosphate pentasodium salt hydrate (Ip5I; P2X(1) antagonist) in RA from both groups. Furthermore, 2-thiouridine 5`-triphosphate tetrasodium salt (2-Thio-UTP; P2Y(2) agonist)-, uridine-5`-(gamma-thio)-triphosphate trisodium salt (UTP gamma S; P2Y(2)/P2Y(4) agonist)-, and 5-iodouridine-5`-O-diphosphate trisodium salt (MRS 2693; P2Y(6) agonist)-induced contractions were all increased in RA from DOCA-salt rats. Protein expression of P2Y(2)-, P2Y(4)-, and P2Y(6) receptors in RA was similar between the two groups. In DOCA-salt RA, the enhanced Up(4)A-induced contraction was reduced by PD98059, an ERK pathway inhibitor, and Up(4)Astimulated ERK activation was increased. These data are the first to indicate that Up(4)A-induced contraction is enhanced in RA from DOCA-salt rats. Enhanced P2Y receptor signaling and activation of the ERK pathway together represent a likely mechanism mediating the enhanced Up(4)A-induced contraction. Up(4)A might be of relevance in the pathophysiology of vascular tone regulation and renal dysfunction in arterial hypertension.
Resumo:
The insular cortex (IC) has been reported to modulate the cardiac parasympathetic activity of the baroreflex in unanesthetized rats. However, which neurotransmitters are involved in this modulation is still unclear. In the present study, we evaluated the possible involvement of local IC-noradrenergic neurotransmission in modulating reflex bradycardiac responses. Bilateral microinjection of the selective alpha(1)-adrenoceptor antagonist WB4101 (15 nmol/100 nL), into the IC of male Wistar rats, increased the gain of reflex bradycardia in response to mean arterial pressure (MAP) increases evoked by intravenous infusion of phenylephrine. However, bilateral microinjection of equimolar doses of either the selective alpha(2)-adrenoceptor antagonist RX821002 or the non-selective beta-adrenoceptor antagonist propranolol into the IC did not affect the baroreflex response. No effects were observed in basal MAP or heart rate values after bilateral microinjection of noradrenergic antagonists into the IC, thus suggesting no tonic influence of IC-noradrenergic neurotransmission on resting cardiovascular parameters. In conclusion, these data provide evidence that local IC-noradrenergic neurotransmission has an inhibitory influence on baroreflex responses to blood pressure increase evoked by phenylephrine infusion through activation of alpha(1)-adrenoceptors. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The superior colliculus (SC) is a mesencephalic area involved in the mediation of defensive movements associated with cardiovascular changes. Noradrenaline (NA) is a neurotransmitter with an important role in central cardiovascular regulation exerted by several structures of the central nervous system. Although noradrenergic nerve terminals have been observed in the SC, there are no reports on the effects of local NA injection into this area. Taking this into consideration, we studied the cardiovascular effects of NA microinjection into the SC of unanesthetized rats. Microinjection of NA into the SC evoked a dose-dependent blood pressure increase and a heart rate decrease in unanesthetized rats. The pressor response to NA was not modified by intravenous pretreatment with the vasopressin v(1)-receptor antagonist dTyr(CH(2))(5) (Me)AVP, indicating a lack of vasopressin involvement in the response mediation. The effect of NA microinjection into the SC was blocked by intravenous pretreatment with the ganglionic blocker pentolinium, indicating its mediation by the sympathetic nervous system. Although the pressor response to NA was not affected by adrenal demedullation, the accompanying bradycardia was potentiated, suggesting some involvement of the sympathoadrenal system in the cardiovascular response to NA microinjection into the SC. In summary, results indicate that stimulation of noradrenergic receptors in the SC causes cardiovascular responses which are mediated by activation of both neural and adrenal sympathetic nervous system components. (C) 2009 Elsevier B.V. All rights reserved.