988 resultados para 3D volumetric reconstruction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel heteronuclear 3d-4f compound having formula NdCu3L3·13H2O (where H3L = Schiff base derived from 5-bromosalicylaldehyde and glycylglycine and L³ = C11H8 N2O4Br) was obtained. It was characterized by elemental and thermal analyses and magnetic measurements. The Cu(II)-Nd(III) compound is stable up to 323 K. During dehydration process the water molecules are lost in two stages. The magnetic susceptibility data for this complex change with temperature according to the Curie-Weiss law with theta = -35 K. The magnetic moment values decrease from 5.00µB at 303 K to 4.38µB at 76 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper aims at clarifying the nature of Frege's system of logic, as presented in the first volume of the Grundgesetze . We undertake a rational reconstruction of this system, by distinguishing its propositional and predicate fragments. This allows us to emphasise the differences and similarities between this system and a modern system of classical second-order logic.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to simulate blood flow in thoracic human aorta and understand the role of flow dynamics in the initialization and localization of atherosclerotic plaque in human thoracic aorta. The blood flow dynamics in idealized and realistic models of human thoracic aorta were numerically simulated in three idealized and two realistic thoracic aorta models. The idealized models of thoracic aorta were reconstructed with measurements available from literature, and the realistic models of thoracic aorta were constructed by image processing Computed Tomographic (CT) images. The CT images were made available by South Karelia Central Hospital in Lappeenranta. The reconstruction of thoracic aorta consisted of operations, such as contrast adjustment, image segmentations, and 3D surface rendering. Additional design operations were performed to make the aorta model compatible for the numerical method based computer code. The image processing and design operations were performed with specialized medical image processing software. Pulsatile pressure and velocity boundary conditions were deployed as inlet boundary conditions. The blood flow was assumed homogeneous and incompressible. The blood was assumed to be a Newtonian fluid. The simulations with idealized models of thoracic aorta were carried out with Finite Element Method based computer code, while the simulations with realistic models of thoracic aorta were carried out with Finite Volume Method based computer code. Simulations were carried out for four cardiac cycles. The distribution of flow, pressure and Wall Shear Stress (WSS) observed during the fourth cardiac cycle were extensively analyzed. The aim of carrying out the simulations with idealized model was to get an estimate of flow dynamics in a realistic aorta model. The motive behind the choice of three aorta models with distinct features was to understand the dependence of flow dynamics on aorta anatomy. Highly disturbed and nonuniform distribution of velocity and WSS was observed in aortic arch, near brachiocephalic, left common artery, and left subclavian artery. On the other hand, the WSS profiles at the roots of branches show significant differences with geometry variation of aorta and branches. The comparison of instantaneous WSS profiles revealed that the model with straight branching arteries had relatively lower WSS compared to that in the aorta model with curved branches. In addition to this, significant differences were observed in the spatial and temporal profiles of WSS, flow, and pressure. The study with idealized model was extended to study blood flow in thoracic aorta under the effects of hypertension and hypotension. One of the idealized aorta models was modified along with the boundary conditions to mimic the thoracic aorta under the effects of hypertension and hypotension. The results of simulations with realistic models extracted from CT scans demonstrated more realistic flow dynamics than that in the idealized models. During systole, the velocity in ascending aorta was skewed towards the outer wall of aortic arch. The flow develops secondary flow patterns as it moves downstream towards aortic arch. Unlike idealized models, the distribution of flow was nonplanar and heavily guided by the artery anatomy. Flow cavitation was observed in the aorta model which was imaged giving longer branches. This could not be properly observed in the model with imaging containing a shorter length for aortic branches. The flow circulation was also observed in the inner wall of the aortic arch. However, during the diastole, the flow profiles were almost flat and regular due the acceleration of flow at the inlet. The flow profiles were weakly turbulent during the flow reversal. The complex flow patterns caused a non-uniform distribution of WSS. High WSS was distributed at the junction of branches and aortic arch. Low WSS was distributed at the proximal part of the junction, while intermedium WSS was distributed in the distal part of the junction. The pulsatile nature of the inflow caused oscillating WSS at the branch entry region and inner curvature of aortic arch. Based on the WSS distribution in the realistic model, one of the aorta models was altered to induce artificial atherosclerotic plaque at the branch entry region and inner curvature of aortic arch. Atherosclerotic plaque causing 50% blockage of lumen was introduced in brachiocephalic artery, common carotid artery, left subclavian artery, and aortic arch. The aim of this part of the study was first to study the effect of stenosis on flow and WSS distribution, understand the effect of shape of atherosclerotic plaque on flow and WSS distribution, and finally to investigate the effect of lumen blockage severity on flow and WSS distributions. The results revealed that the distribution of WSS is significantly affected by plaque with mere 50% stenosis. The asymmetric shape of stenosis causes higher WSS in branching arteries than in the cases with symmetric plaque. The flow dynamics within thoracic aorta models has been extensively studied and reported here. The effects of pressure and arterial anatomy on the flow dynamic were investigated. The distribution of complex flow and WSS is correlated with the localization of atherosclerosis. With the available results we can conclude that the thoracic aorta, with complex anatomy is the most vulnerable artery for the localization and development of atherosclerosis. The flow dynamics and arterial anatomy play a role in the localization of atherosclerosis. The patient specific image based models can be used to diagnose the locations in the aorta vulnerable to the development of arterial diseases such as atherosclerosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT Samples of Araucaria angustifolia were collected at Fazenda Rio Grande, Paraná, Brazil (25°39'S 49 18'O) in January 2011. The 32 samples from 8 trees were subjected to treatments following dendrochronological techniques. The cores were measured and dated using optical and computational methodology, and then standardized to obtain a growth-ring time series, which considers the 1907-2009 time range and represents Fazenda Rio Grande. Tree-ring indices were analyzed and correlated to temperature and precipitation averages from the 1961-2009 range. This procedure aimed to study and understand the influence of the local climate on the plant growth and if this influence can be quantified. A. angustifolia trees produce visible annual growth rings, and their earlywood and latewood are clearly defined. The present study shows that A. angustifolia is sensitive to climate variables (e.g., low temperatures in wintertime tend to stop the growth rate). The correlation between tree rings and monthly precipitation series showed a common trend, making it possible to estimate the seasonal rainfall behavior for the entire 1907-2009 range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study aimed to determine the volumetric shrinkage rate of bean (Phaseolus vulgaris L.) seeds during air-drying under different conditions of air, temperature and relative humidity, and to adjust several mathematical models to the empiric values observed, and select the one that best represents the phenomenon. Six mathematical models were adjusted to the experimental values to represent the phenomenon. It was determined the degree of adjustment of each model from the value of the coefficient of determination, the behavior of the distribution of the residuals, and the magnitude of the average relative and estimated errors. The rate of volumetric shrinkage that occurred in bean seeds during drying is between 25 and 37%. It basically depends on the final moisture content, regardless of the air conditions during drying. The Modified Bala & Woods' model best represented the process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The determination of volumetric water content of soils is an important factor in irrigation management. Among the indirect methods for estimating, the time-domain reflectometry (TDR) technique has received a significant attention. Like any other technique, it has advantages and disadvantages, but its greatest disadvantage is the need of calibration and high cost of acquisition. The main goal of this study was to establish a calibration model for the TDR equipment, Trase System Model 6050X1, to estimate the volumetric water content in a Distroferric Red Latosol. The calibration was carried out in a laboratory with disturbed soil samples under study, packed in PVC columns of a volume of 0.0078m³. The TDR probes were handcrafted with three rods and 0.20m long. They were vertically installed in soil columns, with a total of five probes per column and sixteen columns. The weightings were carried out in a digital scale, while daily readings of dielectric constant were obtained in TDR equipment. The linear model θν = 0.0103 Ka + 0.1900 to estimate the studied volumetric water content showed an excellent coefficient of determination (0.93), enabling the use of probes in indirect estimation of soil moisture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Precision irrigation seeks to establish strategies which achieve an efficient ratio between the volume of water used (reduction in input) and the productivity obtained (increase in production). There are several studies in the literature on strategies for achieving this efficiency, such as those dealing with the method of volumetric water balance (VWB). However, it is also of great practical and economic interest to set up versatile implementations of irrigation strategies that: (i) maintain the performance obtained with other implementations, (ii) rely on few computational resources, (iii) adapt well to field conditions, and (iv) allow easy modification of the irrigation strategy. In this study, such characteristics are achieved when using an Artificial Neural Network (ANN) to determine the period of irrigation for a watermelon crop in the Irrigation Perimeter of the Lower Acaraú, in the state of Ceará, Brazil. The Volumetric Water Balance was taken as the standard for comparing the management carried out with the proposed implementation of ANN. The statistical analysis demonstrates the effectiveness of the proposed management, which is able to replace VWB as a strategy in automation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The autors present a case of bilateral vulvar defects after abrasion of malignant skin neoplasm, reconstructed with a gluteal-fold perforator flap, resulting in a successful outcome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resection of the confluence of the superior mesenteric and portal veins has been performed most frequently in the treatment of adenocarcinoma of the pancreas, in view of the reported positive results, but it can also be used in cases of benign pancreatic neolpasias when they are strongly adhered to the mesenteric-portal trunk. Nevertheless, there is no study on the best type of venous grafts for reconstruction of the mesenteric-portal trunk when required. The choice of graft depends on the preference of the surgeon or the institution. This technical note critically discusses the use of the splenic vein as an option for mesenteric-portal trunk reconstruction after gastroduodenopancreatectomy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors detail the experimental development of a technique for the reconstruction of the ureter using a tubular shape, muscle flap of the abdominal wall. the preliminary results indicate the feasibility of this surgical technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: to evaluate the efficacy of the amniotic membrane used with polypropylene mesh against the formation of adhesions and its influence on healing. METHODS: twenty five female Wistar rats were anesthetized for creating a parietal defect in the anterior abdominal wall. Its correction was made with polypropylene mesh alone and associated with amniotic membrane. In the control group (n=11), the screen was inserted alone. In group A (n=7) we interposed the amniotic membrane between the screen and the abdominal wall. In group B, the amniotic membrane was placed on the mesh, covering it. After seven days, the animals were euthanized for macroscopic and microscopic evaluation of healing. RESULTS: adhesions were observed in all animals except one in the control group. Severe inflammation was observed in all animals in groups A and B and in three of the control group, with significant difference between them (A and B with p=0.01). Pronounced angiogenic activity was noted in one animal in the control group, six in group A and four in group B, with a significant difference between the control group and group A (p=0.002) and group B (p=0.05). The scar collagen was predominantly mature, except in five animals of the control group, with significant difference between the control group and group A (p=0.05) and group B (p=0.05). CONCLUSION: The amniotic membrane did not alter the formation of adhesions in the first postoperative week. There were also pronounced inflammation, high angiogenic activity and predominance of mature collagen fibers, regardless of the anatomical plane that it was inserted in.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: to discuss the participation of Plastic Surgery in the reconstruction of the chest wall, highlighting relevant aspects of interdisciplinaryness. Methods: we analyzed charts from 20 patients who underwent extensive resection of the thoracic integument, between 2000 and 2014, recording the indication of resection, the extent and depth of the raw areas, types of reconstructions performed and complications. Results: among the 20 patients, averaging 55 years old, five were males and 15 females. They resections were: one squamous cell carcinoma, two basal cell carcinomas, five chondrosarcomas and 12 breast tumors. The extent of the bloody areas ranged from 4x9 cm to 25x40 cm. In 12 patients the resection included the muscular plane. In the remaining eight, the tumor removal achieved a total wall thickness. For reconstruction we used: one muscular flap associated with skin grafting, nine flaps and ten regional fasciocutaneous flaps. Two patients undergoing reconstruction with fasciocutaneous flaps had partially suffering of the flap, solved with employment of a myocutaneous flap. The other patients displayed no complications with the techniques used, requiring only one surgery. Conclusion: the proper assessment of local tissues and flaps available for reconstruction, in addition to the successful integration of Plastic Surgery with the specialties involved in the treatment, enable extensive resections of the chest wall and reconstructions that provide patient recovery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, a model called CFB3D is validated for oxygen combustion in circulating fluidized bed boiler. The first part of the work consists of literature review in which circulating fluidized bed and oxygen combustion technologies are studied. In addition, the modeling of circulating fluidized bed furnaces is discussed and currently available industrial scale three-dimensional furnace models are presented. The main features of CFB3D model are presented along with the theories and equations related to the model parameters used in this work. The second part of this work consists of the actual research and modeling work including measurements, model setup, and modeling results. The objectives of this thesis is to study how well CFB3D model works with oxygen combustion compared to air combustion in circulating fluidized bed boiler and what model parameters need to be adjusted when changing from air to oxygen combustion. The study is performed by modeling two air combustion cases and two oxygen combustion cases with comparable boiler loads. The cases are measured at Ciuden 30 MWth Flexi-Burn demonstration plant in April 2012. The modeled furnace temperatures match with the measurements as well in oxygen combustion cases as in air combustion cases but the modeled gas concentrations differ from the measurements clearly more in oxygen combustion cases. However, the same model parameters are optimal for both air and oxygen combustion cases. When the boiler load is changed, some combustion and heat transfer related model parameters need to be adjusted. To improve the accuracy of modeling results, better flow dynamics model should be developed in the CFB3D model. Additionally, more measurements are needed from the lower furnace to find the best model parameters for each case. The validation work needs to be continued in order to improve the modeling results and model predictability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyanobacteria are unicellular, non-nitrogen-fixing prokaryotes, which perform photosynthesis similarly as higher plants. The cyanobacterium Synechocystis sp. strain PCC 6803 is used as a model organism in photosynthesis research. My research described herein aims at understanding the function of the photosynthetic machinery and how it responds to changes in the environment. Detailed knowledge of the regulation of photosynthesis in cyanobacteria can be utilized for biotechnological purposes, for example in the harnessing of solar energy for biofuel production. In photosynthesis, iron participates in electron transfer. Here, we focused on iron transport in Synechocystis sp. strain PCC 6803 and particularly on the environmental regulation of the genes encoding the FutA2BC ferric iron transporter, which belongs to the ABC transporter family. A homology model built for the ATP-binding subunit FutC indicates that it has a functional ATPbinding site as well as conserved interactions with the channel-forming subunit FutB in the transporter complex. Polyamines are important for the cell proliferation, differentiation and apoptosis in prokaryotic and eukaryotic cells. In plants, polyamines have special roles in stress response and in plant survival. The polyamine metabolism in cyanobacteria in response to environmental stress is of interest in research on stress tolerance of higher plants. In this thesis, the potd gene encoding an polyamine transporter subunit from Synechocystis sp. strain PCC 6803 was characterized for the first time. A homology model built for PotD protein indicated that it has capability of binding polyamines, with the preference for spermidine. Furthermore, in order to investigate the structural features of the substrate specificity, polyamines were docked into the binding site. Spermidine was positioned very similarly in Synechocystis PotD as in the template structure and had most favorable interactions of the docked polyamines. Based on the homology model, experimental work was conducted, which confirmed the binding preference. Flavodiiron proteins (Flv) are enzymes, which protect the cell against toxicity of oxygen and/or nitric oxide by reduction. In this thesis, we present a novel type of photoprotection mechanism in cyanobacteria by the heterodimer of Flv2/Flv4. The constructed homology model of Flv2/Flv4 suggests a functional heterodimer capable of rapid electron transfer. The unknown protein sll0218, encoded by the flv2-flv4 operon, is assumed to facilitate the interaction of the Flv2/Flv4 heterodimer and energy transfer between the phycobilisome and PSII. Flv2/Flv4 provides an alternative electron transfer pathway and functions as an electron sink in PSII electron transfer.