917 resultados para 3D Modeling of Glioma Tumor
Resumo:
Implementation of stable aeroelastic models with the ability to capture the complex features of Multi concept smartblades is a prime step in reducing the uncertainties that come along with blade dynamics. The numerical simulations of fluid structure interaction can thus be used to test a realistic scenarios comprising of full-scale blades at a reasonably low computational cost. A code which was a combination of two advanced numerical models was designed and was run with the help of paralell HPC supercomputer platform. The first model was based on a variation of dimensional reduction technique proposed by Hodges and Yu. This model was the one to record the structural response of heterogenous composite blades. This technique reduces the geometrical complexities of the heterogenous blade section into a stiffness matrix for an equivalent beam. This derived equivalent 1-D strain energy matrix is similar to the actual 3-D strain energy matrix in an asymptotic sense. As this 1-D matrix helps in accurately modeling the blade structure as a 1-D finite element problem, this substantially redues the computational effort and subsequently the computational cost that are required to model the structural dynamics at each step. Second model comprises of implementation of the Blade Element Momentum Theory. In this approach we map all the velocities and the forces with the help of orthogonal matrices that help in capturing the large deformations and the effects of rotations in calculating the aerodynamic forces. This ultimately helps us to take into account the complex flexo torsional deformations. In this thesis we have succesfully tested these computayinal tools developed by MTU’s research team lead by for the aero elastic analysis of wind-turbine blades. The validation in this thesis is majorly based on several experiments done on NREL-5MW blade, as this is widely accepted as a benchmark blade in the wind industry. Along with the use of this innovative model the internal blade structure was also changed to add up to the existing benefits of the already advanced numerical models.
Resumo:
Managed lane strategies are innovative road operation schemes for addressing congestion problems. These strategies operate a lane (lanes) adjacent to a freeway that provides congestion-free trips to eligible users, such as transit or toll-payers. To ensure the successful implementation of managed lanes, the demand on these lanes need to be accurately estimated. Among different approaches for predicting this demand, the four-step demand forecasting process is most common. Managed lane demand is usually estimated at the assignment step. Therefore, the key to reliably estimating the demand is the utilization of effective assignment modeling processes. Managed lanes are particularly effective when the road is functioning at near-capacity. Therefore, capturing variations in demand and network attributes and performance is crucial for their modeling, monitoring and operation. As a result, traditional modeling approaches, such as those used in static traffic assignment of demand forecasting models, fail to correctly predict the managed lane demand and the associated system performance. The present study demonstrates the power of the more advanced modeling approach of dynamic traffic assignment (DTA), as well as the shortcomings of conventional approaches, when used to model managed lanes in congested environments. In addition, the study develops processes to support an effective utilization of DTA to model managed lane operations. Static and dynamic traffic assignments consist of demand, network, and route choice model components that need to be calibrated. These components interact with each other, and an iterative method for calibrating them is needed. In this study, an effective standalone framework that combines static demand estimation and dynamic traffic assignment has been developed to replicate real-world traffic conditions. With advances in traffic surveillance technologies collecting, archiving, and analyzing traffic data is becoming more accessible and affordable. The present study shows how data from multiple sources can be integrated, validated, and best used in different stages of modeling and calibration of managed lanes. Extensive and careful processing of demand, traffic, and toll data, as well as proper definition of performance measures, result in a calibrated and stable model, which closely replicates real-world congestion patterns, and can reasonably respond to perturbations in network and demand properties.
Resumo:
The low-frequency electromagnetic compatibility (EMC) is an increasingly important aspect in the design of practical systems to ensure the functional safety and reliability of complex products. The opportunities for using numerical techniques to predict and analyze system’s EMC are therefore of considerable interest in many industries. As the first phase of study, a proper model, including all the details of the component, was required. Therefore, the advances in EMC modeling were studied with classifying analytical and numerical models. The selected model was finite element (FE) modeling, coupled with the distributed network method, to generate the model of the converter’s components and obtain the frequency behavioral model of the converter. The method has the ability to reveal the behavior of parasitic elements and higher resonances, which have critical impacts in studying EMI problems. For the EMC and signature studies of the machine drives, the equivalent source modeling was studied. Considering the details of the multi-machine environment, including actual models, some innovation in equivalent source modeling was performed to decrease the simulation time dramatically. Several models were designed in this study and the voltage current cube model and wire model have the best result. The GA-based PSO method is used as the optimization process. Superposition and suppression of the fields in coupling the components were also studied and verified. The simulation time of the equivalent model is 80-100 times lower than the detailed model. All tests were verified experimentally. As the application of EMC and signature study, the fault diagnosis and condition monitoring of an induction motor drive was developed using radiated fields. In addition to experimental tests, the 3DFE analysis was coupled with circuit-based software to implement the incipient fault cases. The identification was implemented using ANN for seventy various faulty cases. The simulation results were verified experimentally. Finally, the identification of the types of power components were implemented. The results show that it is possible to identify the type of components, as well as the faulty components, by comparing the amplitudes of their stray field harmonics. The identification using the stray fields is nondestructive and can be used for the setups that cannot go offline and be dismantled
Resumo:
Adaptability and invisibility are hallmarks of modern terrorism, and keeping pace with its dynamic nature presents a serious challenge for societies throughout the world. Innovations in computer science have incorporated applied mathematics to develop a wide array of predictive models to support the variety of approaches to counterterrorism. Predictive models are usually designed to forecast the location of attacks. Although this may protect individual structures or locations, it does not reduce the threat—it merely changes the target. While predictive models dedicated to events or social relationships receive much attention where the mathematical and social science communities intersect, models dedicated to terrorist locations such as safe-houses (rather than their targets or training sites) are rare and possibly nonexistent. At the time of this research, there were no publically available models designed to predict locations where violent extremists are likely to reside. This research uses France as a case study to present a complex systems model that incorporates multiple quantitative, qualitative and geospatial variables that differ in terms of scale, weight, and type. Though many of these variables are recognized by specialists in security studies, there remains controversy with respect to their relative importance, degree of interaction, and interdependence. Additionally, some of the variables proposed in this research are not generally recognized as drivers, yet they warrant examination based on their potential role within a complex system. This research tested multiple regression models and determined that geographically-weighted regression analysis produced the most accurate result to accommodate non-stationary coefficient behavior, demonstrating that geographic variables are critical to understanding and predicting the phenomenon of terrorism. This dissertation presents a flexible prototypical model that can be refined and applied to other regions to inform stakeholders such as policy-makers and law enforcement in their efforts to improve national security and enhance quality-of-life.
Resumo:
Background Plant-soil interaction is central to human food production and ecosystem function. Thus, it is essential to not only understand, but also to develop predictive mathematical models which can be used to assess how climate and soil management practices will affect these interactions. Scope In this paper we review the current developments in structural and chemical imaging of rhizosphere processes within the context of multiscale mathematical image based modeling. We outline areas that need more research and areas which would benefit from more detailed understanding. Conclusions We conclude that the combination of structural and chemical imaging with modeling is an incredibly powerful tool which is fundamental for understanding how plant roots interact with soil. We emphasize the need for more researchers to be attracted to this area that is so fertile for future discoveries. Finally, model building must go hand in hand with experiments. In particular, there is a real need to integrate rhizosphere structural and chemical imaging with modeling for better understanding of the rhizosphere processes leading to models which explicitly account for pore scale processes.
Resumo:
A three-dimensional finite element model of cold pilgering of stainless steel tubes is developed in this paper. The objective is to use the model to increase the understanding of forces and deformations in the process. The focus is on the influence of vertical displacements of the roll stand and axial displacements of the mandrel and tube. Therefore, the rigid tools and the tube are supported with elastic springs. Additionally, the influences of friction coefficients in the tube/mandrel and tube/roll interfaces are examined. A sensitivity study is performed to investigate the influences of these parameters on the strain path and the roll separation force. The results show the importance of accounting for the displacements of the tube and rigid tools on the roll separation force and the accumulative plastic strain.
Resumo:
Apresenta-se uma metodologia para caracterizar a transmissividade dos Granitos Hercínicos e Metasedimentos do Complexo Xisto-Grauváquico do maciço envolvente e subjacente à antiga área mineira de urânio da Quinta do Bispo. Inicia-se com a modelação das litologias e grau de alteração a que se segue a simulação condicional da densidade de fracturação. No final, a densidade de fracturação é convertida num modelo 3D de transmissividade por relação com os resultados dos ensaios de bombagem. The purpose of this work is to present a methodology for characterizing the transmissivity of the Hercynian granites and complex schist–greywacke metasediment rocks surrounding and underlying the old Quinta do Bispo uranium mining site. The methodology encompasses modelling of lithologies and weathering levels, followed by a conditional simulation of fracture density. Fracture density is then converted into a 3D model of transmissivity via a relationship with pumping tests.
Resumo:
This paper presents the development of a combined experimental and numerical approach to study the anaerobic digestion of both the wastes produced in a biorefinery using yeast for biodiesel production and the wastes generated in the preceding microbial biomass production. The experimental results show that it is possible to valorise through anaerobic digestion all the tested residues. In the implementation of the numerical model for anaerobic digestion, a procedure for the identification of its parameters needs to be developed. A hybrid search Genetic Algorithm was used, followed by a direct search method. In order to test the procedure for estimation of parameters, first noise-free data was considered and a critical analysis of the results obtain so far was undertaken. As a demonstration of its application, the procedure was applied to experimental data.
Resumo:
This paper presents an integrated model for an offshore wind turbine taking into consideration a contribution for the marine wave and wind speed with perturbations influences on the power quality of current injected into the electric grid. The paper deals with the simulation of one floating offshore wind turbine equipped with a permanent magnet synchronous generator, and a two-level converter connected to an onshore electric grid. The use of discrete mass modeling is accessed in order to reveal by computing the total harmonic distortion on how the perturbations of the captured energy are attenuated at the electric grid injection point. Two torque actions are considered for the three-mass modeling, the aerodynamic on the flexible part and on the rigid part of the blades. Also, a torque due to the influence of marine waves in deep water is considered. Proportional integral fractional-order control supports the control strategy. A comparison between the drive train models is presented.
Resumo:
Understanding what characterizes patients who suffer great delays in diagnosis of pulmonary tuberculosis is of great importance when establishing screening strategies to better control TB. Greater delays in diagnosis imply a higher chance for susceptible individuals to become infected by a bacilliferous patient. A Structured Additive Regression model is attempted in this study in order to potentially contribute to a better characterization of bacilliferous prevalence in Portugal. The main findings suggest the existence of significant regional differences in Portugal, with the fact of being female and/or alcohol dependent contributing to an increased delay-time in diagnosis, while being dependent on intravenous drugs and/or being diagnosed with HIV are factors that increase the chance of an earlier diagnosis of pulmonary TB. A decrease in 2010 to 77% on treatment success in Portugal underlines the importance of conducting more research aimed at better TB control strategies.
Resumo:
Irradiation is the main component for producing the electricity from solar energy. When obstacles come in between the sun and the PV cell then it doesn’t get sufficient irradiance to produce enough electricity. Shadowing has a great impact on photovoltaic cell. The main fuel of PV cell is solar radiation. Using solar radiation, a photovoltaic cell produces electricity. The shadow on a PV cell decreases the output of the photovoltaic cell. It has been already shown in different papers that shadow effect decreases the output of the PV cell. There are different kinds of shadow effects which are observed, some minimize the PV cell output and some reduce the output to zero. There are different types of shadow based on their effects on the photovoltaic cell. The shadow has also effects depending on whether the PV cells are connected in series connection or in parallel connection. In series when one cell is out of order then the whole series of the PV cells will not work but in parallel connection if one cell is damaged, the others will work because they work independently. According to the output requirement the arrangement of the PV cells are made in series or parallel. Simulink modeling is made for series and parallel connection between two PV cells and the shadow effect is analyzed on one of the PV cells. Using SIMULINK, the shadowing is simulated on the two PV cells, where in one system they are in series and in another system they are in parallel. Slowly the irradiance is decreased to simulate the shadow effect. Simulation of the shadow effect gives an idea about the output of the PV cell system when system has shadow on the PV cells. Here the shadow effect on the two PV cells using series and parallel combinations are simulated and analyzed for understanding the effects on output.
Resumo:
This work aims to study the application of Genetic Algorithms in anaerobic digestion modeling, in particular when using dynamical models. Along the work, different types of bioreactors are shown, such as batch, semi-batch and continuous, as well as their mathematical modeling. The work intendeds to estimate the parameter values of two biological reaction model. For that, simulated results, where only one output variable, the produced biogas, is known, are fitted to the model results. For this reason, the problems associated with reverse optimization are studied, using some graphics that provide clues to the sensitivity and identifiability associated with the problem. Particular solutions obtained by the identifiability analysis using GENSSI and DAISY softwares are also presented. Finally, the optimization is performed using genetic algorithms. During this optimization the need to improve the convergence of genetic algorithms was felt. This need has led to the development of an adaptation of the genetic algorithms, which we called Neighbored Genetic Algorithms (NGA1 and NGA2). In order to understand if this new approach overcomes the Basic Genetic Algorithms (BGA) and achieves the proposed goals, a study of 100 full optimization runs for each situation was further developed. Results show that NGA1 and NGA2 are statistically better than BGA. However, because it was not possible to obtain consistent results, the Nealder-Mead method was used, where the initial guesses were the estimated results from GA; Algoritmos Evolucionários para a Modelação de Bioreactores Resumo: Neste trabalho procura-se estudar os algoritmos genéticos com aplicação na modelação da digestão anaeróbia e, em particular, quando se utilizam modelos dinâmicos. Ao longo do mesmo, são apresentados diferentes tipos de bioreactores, como os batch, semi-batch e contínuos, bem como a modelação matemática dos mesmos. Neste trabalho procurou-se estimar o valor dos parâmetros que constam num modelo de digestão anaeróbia para o ajustar a uma situação simulada onde apenas se conhece uma variável de output, o biogas produzido. São ainda estudados os problemas associados à optimização inversa com recurso a alguns gráficos que fornecem pistas sobre a sensibilidade e identifiacabilidade associadas ao problema da modelação da digestão anaeróbia. São ainda apresentadas soluções particulares de idenficabilidade obtidas através dos softwares GENSSI e DAISY. Finalmente é realizada a optimização do modelo com recurso aos algoritmos genéticos. No decorrer dessa optimização sentiu-se a necessidade de melhorar a convergência e, portanto, desenvolveu-se ainda uma adaptação dos algoritmos genéticos a que se deu o nome de Neighboured Genetic Algorithms (NGA1 e NGA2). No sentido de se compreender se as adaptações permitiam superar os algoritmos genéticos básicos e atingir as metas propostas, foi ainda desenvolvido um estudo em que o processo de optimização foi realizado 100 vezes para cada um dos métodos, o que permitiu concluir, estatisticamente, que os BGA foram superados pelos NGA1 e NGA2. Ainda assim, porque não foi possivel obter consistência nos resultados, foi usado o método de Nealder-Mead utilizado como estimativa inicial os resultados obtidos pelos algoritmos genéticos.
Resumo:
2016
Resumo:
Today, the contribution of the transportation sector on greenhouse gases is evident. The fast consumption of fossil fuels and its impact on the environment has given a strong impetus to the development of vehicles with better fuel economy. Hybrid electric vehicles fit into this context with different targets, starting from the reduction of emissions and fuel consumption, but also for performance and comfort enhancement. Vehicles exist with various missions; super sport cars usually aim to reach peak performance and to guarantee a great driving experience to the driver, but great attention must also be paid to fuel consumption. According to the vehicle mission, hybrid vehicles can differ in the powertrain configuration and the choice of the energy storage system. Lamborghini has recently invested in the development of hybrid super sport cars, due to performance and comfort reasons, with the possibility to reduce fuel consumption. This research activity has been conducted as a joint collaboration between the University of Bologna and the sportscar manufacturer, to analyze the impact of innovative energy storage solutions on the hybrid vehicle performance. Capacitors have been studied and modeled to analyze the pros and cons of such solution with respect to batteries. To this aim, a full simulation environment has been developed and validated to provide a concept design tool capable of precise results and able to foresee the longitudinal performance on regulated emission cycles and real driving conditions, with a focus on fuel consumption. In addition, the target of the research activity is to deepen the study of hybrid electric super sports cars in the concept development phase, focusing on defining the control strategies and the energy storage system’s technology that best suits the needs of the vehicles. This dissertation covers the key steps that have been carried out in the research project.
Resumo:
Vaults are an architectural element which during construction history have been built with a great variety of different materials, shapes, and sizes. The shape of these structural elements was often dependent by the necessity to cover complex spaces, by the needed loading capacity, or by architectural aesthetics. Within this complex scenario masonry patterns generates also different effects on loading capacity, load percolation and stiffness of the structure. These effects were been extensively investigated, both with empirical observations and with modern numerical methods. While most of them focus on analyzing the load bearing capacity or the texture effect on vaulted structures, the aim of this analysis is to investigate on the effects of the variation of a single structural characteristic on the load percolation in the vault. Moreover, an additional purpose of the work is related to the coding of a parametrical model aiming at generating different masonry vaulted structures. Nevertheless, proposed script can generate different typology of vaulted structure basing on some structural characteristics, such as the span and the length to cover and the dimensions of the blocks.