995 resultados para 319.8
Resumo:
Caretakers intuitively use various sources of evidence when judging infant pain, but the relative importance of salient cues has received little attention. This investigation examined the predictive significance for judgements of painful discomfort in preterm and full-term neonates of behavioural (facial activity and body movement), contextual (invasiveness of the procedure), and developmental (gestational age) information. Judges viewed videotapes showing infants varying in the foregoing characteristics undergoing heel incisions for routine blood sampling purposes. Findings indicated all but the contextual information contributed uniquely to judgements of pain, with facial activity accounting for the most unique variance (35%), followed by bodily activity and gestational age, each accounting for 3% and 1% of the judgmental variance, respectively. Generally, 71% of the variance in ratings of pain could be predicted using facial activity alone, compared to 30% of the variance using bodily activity alone, 19% by relying on context alone, and 8% by referring to gestational age alone. Noteworthy was the tendency to judge early preterm infants to be experiencing less pain even though they were subjected to the same invasive procedure as the older infants. This finding also runs counter to evidence from developmental neurobiology which indicates that preterm newborns may be hypersensitive to invasive procedures.
Resumo:
An experimental oral pig model was used to assess the pathogenic and immunogenic potential of Yersinia enterocolitica serotype O:8 wild-type strain 8081-L2 and its lipopolysaccharide (LPS) mutant derivatives: a spontaneous rough mutant 8081-R2, strain 8081-DeltawzzGB expressing O-antigen with uncontrolled chain lengths, and strain 8081-wbcEGB expressing semirough LPS with only one O-unit. Microbiological and immunological parameters of the infected pigs were followed from day 7 to 60 postinfection. The wild-type and all LPS mutant strains persisted in the lymphoid tissue of tonsils and small intestines, causing asymptomatic infection without any pathological changes. Although the pig is known as a reservoir of Yersiniae, a precise analysis of pathogenic and immunogenic parameters based on different in vitro tests (hematological response, killing ability of leukocytes and blood sera, antibody response, hydrogen peroxide production by macrophages, classical and alternative pathways of complement activation), revealed significant attenuation in the pathogenicity of the LPS mutant strains but not the loss of immunogenic potential. In comparison with the other strains, strain 8081-DeltawzzGB demonstrated more continuous leucocytosis with monocytosis, higher invasive potential, significant activation of hydrogen peroxide production by macrophages and an effective immunoglobulin G immune response accompanied by relevant histological immunomorphological rearrangements.
Resumo:
Lipopolysaccharide (LPS) is the major component of the outer membrane of Gram-negative bacteria. Although much attention has been given to the biological effects of its lipid A portion, a great body of evidence indicates that its O chain polysaccharide (O antigen) portion plays an important role in the bacterium-host interplay. In this work we have studied in-depth the role of the O antigen in Yersinia enterocolitica serotype O:8 pathogenesis. We made a detailed virulence analysis of three mutants having different O antigen phenotypes: (i) LPS with no O antigen (rough mutant); (ii) LPS with one O unit (semirough mutant) and (iii) LPS with random distribution of O antigen chain lengths. We demonstrated that these LPS O antigen mutants were attenuated in virulence regardless of the infection route used. Co-infection experiments revealed that the rough and semirough mutants were severely impaired in their ability to colonize the Peyer's patches and in contrast to the wild-type strain they did not colonize spleen and liver. The mutant with random distribution of O antigen chain lengths, however, survived better but started to be cleared from mouse organs after 8 days. As an explanation to this attenuation we present here evidence that other Yersinia virulence factors depend on the presence of O antigen for their proper function and/or expression. We demonstrated that in the rough mutant: (i) the YadA function but not its expression was altered; (ii) Ail was not expressed and (iii) inv expression was downregulated. On the other hand, expression of flhDC, the flagellar master regulatory operon, was upregulated in this mutant with a concomitant increase in the production of flagellins. Finally, expression of yplA, encoding for the Yersinia phospholipase A, was also upregulated accompanied by an increased flagellar type III secretion system mediated secretion of YplA to culture medium. Together these findings suggest that the absence of O antigen in the outer membrane of Yersinia either directly or indirectly, for example through a cellular or membrane stress, could act as a regulatory signal.
Resumo:
The lipopolysaccharide (LPS) O-antigen of Yersinia enterocolitica serotype O:8 is formed by branched pentasaccharide repeat units that contain N-acetylgalactosamine (GalNAc), L-fucose (Fuc), D-galactose (Gal), D-mannose (Man), and 6-deoxy-D-gulose (6d-Gul). Its biosynthesis requires at least enzymes for the synthesis of each nucleoside diphosphate-activated sugar precursor; five glycosyltransferases, one for each sugar residue; a flippase (Wzx); and an O-antigen polymerase (Wzy). As this LPS shows a characteristic preferred O-antigen chain length, the presence of a chain length determinant protein (Wzz) is also expected. By targeted mutagenesis, we identify within the O-antigen gene cluster the genes encoding Wzy and Wzz. We also present genetic and biochemical evidence showing that the gene previously called galE encodes a UDP-N-acetylglucosamine-4-epimerase (EC 5.1.3.7) required for the biosynthesis of the first sugar of the O-unit. Accordingly, the gene was renamed gne. Gne also has some UDP-glucose-4-epimerase (EC 5.1.3.2) activity, as it restores the core production of an Escherichia coli K-12 galE mutant. The three-dimensional structure of Gne was modeled based on the crystal structure of E. coli GalE. Detailed structural comparison of the active sites of Gne and GalE revealed that additional space is required to accommodate the N-acetyl group in Gne and that this space is occupied by two Tyr residues in GalE whereas the corresponding residues present in Gne are Leu136 and Cys297. The Gne Leu136Tyr and Cys297Tyr variants completely lost the UDP-N-acetylglucosamine-4-epimerase activity while retaining the ability to complement the LPS phenotype of the E. coli galE mutant. Finally, we report that Yersinia Wzx has relaxed specificity for the translocated oligosaccharide, contrary to Wzy, which is strictly specific for the O-unit to be polymerized.
Resumo:
The O-antigen of lipopolysaccharide (LPS) is required for virulence in Yersinia enterocolitica serotype O:8. Here we evaluated the importance of controlling the O-antigen biosynthesis using an in vivo rabbit model of infection. Y. enterocolitica O:8 wild-type strain was compared to three mutants differing in the O-antigen phenotype: (i) the rough strain completely devoid of the O-antigen, (ii) the wzy strain that lacks the O-antigen polymerase (Wzy protein) and expresses LPS with only one repeat unit, and (iii) the wzz strain that lacks the O-antigen chain length determinant (Wzz protein) and expresses LPS without modal distribution of O-antigen chain lengths. The most attenuated strain was the wzz mutant. The wzz bacteria were cleared from the tissues by day 30, the blood parameters were least dramatic and histologically only immunomorphological findings were seen. The level of attenuation of the rough and the wzy strain bacteria was between the wild-type and the wzz strain. Wild-type bacteria were highly resistant to killing by polymorphonuclear leukocytes, the wzz strain bacteria were most sensitive and the rough and wzy strain bacteria were intermediate resistant. These results clearly demonstrated that the presence of O-antigen on the bacterial surface is not alone sufficient for full virulence, but also there is a requirement for its controlled chain length.
Resumo:
Introduction: Amplicon deep-sequencing using second-generation sequencing technology is an innovative molecular diagnostic technique and enables a highly-sensitive detection of mutations. As an international consortium we had investigated previously the robustness, precision, and reproducibility of 454 amplicon next-generation sequencing (NGS) across 10 laboratories from 8 countries (Leukemia, 2011;25:1840-8).
Aims: In Phase II of the study, we established distinct working groups for various hematological malignancies, i.e. acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), chronic myelogenous leukemia (CML), myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), and multiple myeloma. Currently, 27 laboratories from 13 countries are part of this research consortium. In total, 74 gene targets were selected by the working groups and amplicons were developed for a NGS deep-sequencing assay (454 Life Sciences, Branford, CT). A data analysis pipeline was developed to standardize mutation interpretation both for accessing raw data (Roche Amplicon Variant Analyzer, 454 Life Sciences) and variant interpretation (Sequence Pilot, JSI Medical Systems, Kippenheim, Germany).
Results: We will report on the design, standardization, quality control aspects, landscape of mutations, as well as the prognostic and predictive utility of this assay in a cohort of 8,867 cases. Overall, 1,146 primer sequences were designed and tested. In detail, for example in AML, 924 cases had been screened for CEBPA mutations. RUNX1 mutations were analyzed in 1,888 cases applying the deep-sequencing read counts to study the stability of such mutations at relapse and their utility as a biomarker to detect residual disease. Analyses of DNMT3A (n=1,041) were focused to perform landscape investigations and to address the prognostic relevance. Additionally, this working group is focusing on TET2, ASXL1, and TP53 analyses. A novel prognostic model is being developed allowing stratification of AML into prognostic subgroups based on molecular markers only. In ALL, 1,124 pediatric and adult cases have been screened, including 763 assays for TP53 mutations both at diagnosis and relapse of ALL. Pediatric and adult leukemia expert labs developed additional content to study the mutation incidence of other B and T lineage markers such as IKZF1, JAK2, IL7R, PAX5, EP300, LEF1, CRLF2, PHF6, WT1, JAK1, PTEN, AKT1, IL7R, NOTCH1, CREBBP, or FBXW7. Further, the molecular landscape of CLL is changing rapidly. As such, a separate working group focused on analyses including NOTCH1, SF3B1, MYD88, XPO1, FBXW7 and BIRC3. Currently, 922 cases were screened to investigate the range of mutational burden of NOTCH1 mutations for their prognostic relevance. In MDS, RUNX1 mutation analyses were performed in 977 cases. The prognostic relevance of TP53 mutations in MDS was assessed in additional 327 cases, including isolated deletions of chromosome 5q. Next, content was developed targeting genes of the cellular splicing component, e.g. SF3B1, SRSF2, U2AF1, and ZRSR2. In BCR-ABL1-negative MPN, nine genes of interest (JAK2, MPL, TET2, CBL, KRAS, EZH2, IDH1, IDH2, ASXL1) have been analyzed in a cohort of 155 primary myelofibrosis cases searching for novel somatic mutations and addressing their relevance for disease progression and leukemia transformation. Moreover, an assay was developed and applied to CMML cases allowing the simultaneous analysis of 25 leukemia-associated target genes in a single sequencing run using just 20 ng of starting DNA. Finally, nine laboratories are studying CML, applying ultra-deep sequencing of the BCR-ABL1 tyrosine kinase domain. Analyses were performed on 615 cases investigating the dynamics of expansion of mutated clones under various tyrosine kinase inhibitor therapies.
Conclusion: Molecular characterization of hematological malignancies today requires high diagnostic sensitivity and specificity. As part of the IRON-II study, a network of laboratories analyzed a variety of disease entities applying amplicon-based NGS assays. Importantly, the consortium not only standardized assay design for disease-specific panels, but also achieved consensus on a common data analysis pipeline for mutation interpretation. Distinct working groups have been forged to address scientific tasks and in total 8,867 cases had been analyzed thus far.
Resumo:
Harnessing outgrowth endothelial cells (OECs) for vasoreparative therapy and tissue-engineering requires efficient ex-vivo expansion. How such expansion impacts on OEC function is largely unknown. In this study, we show that OECs become permanently cell-cycle arrested after ex-vivo expansion, which is associated with enlarged cell size, ß-galactosidase activity, DNA damage, tumour suppressor pathway activation and significant transcriptome changes. These senescence hallmarks were coupled with low telomerase activity and telomere shortening, indicating replicative senescence. OEC senescence limited their regenerative potential by impairing vasoreparative properties in-vitro and in-vivo. Integrated transcriptome-proteome analysis identified inflammatory signalling pathways as major mechanistic components of the OEC senescence programme. In particular, IL8 was an important facilitator of this senescence; depletion of IL8 in OECs significantly extended ex-vivo lifespan, delayed replicative senescence and enhanced function. While the ability to expand OEC numbers prior to autologous or allogeneic therapy remains a useful property, their replicative senescence and associated impairment of vasorepair needs to be considered. The current study also suggests that modulation of the senescence-associated secretory phenotype (SASP) could be used to optimise OEC therapy.
Resumo:
SU-8 epoxy-based negative photoresist has been extensively employed as a structural material for fabrication of numerous biological microelectro-mechanical systems (Bio-MEMS) or lab-on-a-chip (LOC) devices. However, SU-8 has a high autofluorescence level that limits sensitivity of microdevices that use fluorescence as the predominant detection workhorse. Here, we show that deposition of a thin gold nanoparticles layer onto the SU-8 surface significantly reduces the autofluorescence of the coated SU-8 surface by as much as 81% compared to bare SU-8. Furthermore, DNA probes can easily be immobilized on the Au surface with high thermal stability. These improvements enabled sensitive DNA detection by simple DNA hybridization down to 1 nM (a two orders of magnitude improvement) or by solid-phase PCR with sub-picomolar sensitivity. The approach is simple and easy to perform, making it suitable for various Bio-MEMs and LOC devices that use SU-8 as a structural material.
Resumo:
This paper reports a surface modification of epoxy-based negative photoresist SU-8 for reducing its autofluorescence while enhancing its biofunctionality. By covalently depositing a thin layer of 20 nm Au nanoparticles (AuNPs) onto the SU-8 surface, we found that the AuNPs-coated SU-8 surface is much less fluorescent than the untreated SU-8. Moreover, DNA probes can easily be immobilized on the Au surface and are thermally stable over a wide range of temperature. These improvements will benefit bioanalytical applications such as DNA hybridization and solid-phase PCR (SP-PCR).
Resumo:
This article describes a practical demonstration of a complete full-duplex “amplitude shift keying (ASK)” retrodirective radio frequency identification (RFID) transceiver array.The interrogator incorporates a “retrodirective array (RDA)” with a dual-conversion phase conjugating architecture in order to achieve better performance than is possible with conventional RFID solutions. Here mixers phase conjugate the incoming signal and a carrier recovery circuit recovers incoming angle of arrival phase information of an encoded amplitude shift keyed signal. The resulting interrogator provides a receiver sensitivity level of -109 dBm. A four element square patch RDA gives a 3 dB automatic beam steering angle of acceptance of ±45°. When compared to an RFID system operating by conventional (non-retrodirective) means retrodirective action leads to improved range extension of up to 16 times at ±45°. Operator pointing accuracy requirements are also reduced due to automatic retrodirective self-pointing. These features significantly enhance deployment opportunities requiring long range low equivalent isotropic radiation power (EIRP) and/or RFID tagging of moving platforms. © 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett 55:160–164, 2013; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.27258
Resumo:
Malone, C. and S. Stoddart, Papers of the British School at Rome, 1992. 60: p. 1-69.
Resumo:
Epithelia play important immunological roles at a variety of mucosal sites. We examined NFkappaB activity in control and TNF-alpha treated bovine mammary epithelial monolayers (BME-UV cells). A region of the bovine IL-8 (bIL-8) promoter was sequenced and a putative kappaB consensus sequence was identified bioinformatically. We used this sequence to analyse nuclear extracts for IL-8 specific NFkappaB activity. As a surrogate marker of NFkappaB activation, we investigated IL-8 release in two models. Firstly in BME-UV monolayers, IL-8 release in the presence of pro- and anti-inflammatory agents was determined by enzyme-linked immunosorbent assay (ELISA). Secondly, we measured IL-8 secretion from a novel model of intact mucosal sheets of bovine teat sinus. IL-8 release into bathing solutions was assessed following treatment with pro- and anti-inflammatory agents. TNF-alpha enhanced NFkappaB activity in bovine mammary epithelial monolayers. p65 NFkappaB homodimer was identified in both control and TNF-alpha treated cells. Novel sequencing of the bovine IL-8 promoter identified a putative kappaB consensus sequence, which specifically bound TNF-alpha inducible p50/p65 heterodimer. TNF-alpha induced primarily serosal IL-8 release in the cell culture model. Pre-treatment with anti-TNF or dexamethasone inhibited TNF-alpha induced IL-8 release. High dose interleukin-1beta (IL-1beta) induced IL-8 release, however significantly less potently than TNF-alpha. Bovine mammary mucosal tissue released high basal levels of IL-8 which were unaffected by TNF-alpha or IL-1beta but inhibited by both dexamethasone and anti-TNF. These data support a role for TNF-alpha in activation of NFkappaB and release of IL-8 from bovine mammary epithelial cells.