904 resultados para 300704 Ecosystem Studies and Stock Assessment
Resumo:
The purpose of this study was to investigate the learning preferences and the post-secondary educational experiences of a group of Net-Gen adult learners, aged between 18 and 35, currently working in the knowledge economy workplace, and their assessment of how adequately they were prepared to meet the requirements of the knowledge economy workplace. This study utilized an explanatory mixed-method research design. Participants completed a questionnaire providing information on their self-reported learning style preferences, their use of digital tools for formal and informal learning, their use of digital technologies in postsecondary educational experiences, and their use of digital technologies in their workplace. Four volunteers from the questionnaire respondents were selected to participate in interviews based on the diversity of their experiences in higher education, including digital environments, and the diversity of their knowledge economy workplaces. Data collected from the questionnaire were analyzed for descriptive and demographic statistics, and categorized so that common patterns could be identified from information gathered from the online questionnaire and interviews. Findings based on this study indicated that these Net-Gen adult learners were fluent with all types of digital technologies in collaborative environments, expecting their educational experiences to provide a similar experience. Participants clearly expressed an understanding that digital/collaborative aptitudes are essential to successful employment in the knowledge economy workplace. The findings of this study indicated that the majority of participants felt that their post-secondary educational experiences did not adequately prepare them to meet the expectations of this type of working environment.
Resumo:
A set of six new polystyrene anchored metal complexes have been synthesized by the reaction of the metal salt with the polystyrene anchored Schiff base of vanillin. These complexes were characterized by elemental analyses, Fourier transform infrared spectroscopy, diffuse reflectance studies, thermal studies, and magnetic susceptibility measurements. The elemental analyses suggest a metal : ligand ratio of 1 : 2. The ligand is unidentate and coordinates through the azomethine nitrogen. The Mn(II), Fe(III), Co(II), Ni(II), and Cu(II) complexes are all paramagnetic while Zn(II) is diamagnetic. The Cu(II) complex is assigned a square planar structure, while Zn(II) is assigned a tetrahedral structure and Mn(II), Fe(III), Co(II), and Ni(II) are all assigned octahedral geometry. The thermal analyses were done on the ligand and its complexes to reveal their stability. Further, the application of the Schiff base as a chelating resin in ion removal studies was investigated. The polystyrene anchored Schiff base gave 96% efficiency in the removal of Ni(II) from a 20-ppm solution in 15 min, without any interference from ions such as Mn(II), Co(II), Fe(III), Cu(II), Zn(II), U(VI), Na , K , NH4 , Ca2 , Cl , Br , NO3 , NO2 ,and CH3CO2 . The major advantage is that the removal is achieved without altering the pH.
Resumo:
The present research is aimed at studying the charnockites and associated rocks of the Madurai Granulite Block (MGB), especially in terms of their field settings, texture, mineralogy, and mineral chemistry analyzing their petrogenesis with the help of thermobarometrical studies and geochronological constraints. The mechanism of charnockitization by the influx of CO2 rich fluids and its relation to the graphite mineralization is actually a matter of discussion and study. The objectives of the present study are, to delineate petrological and structural relationship of charnockites and associated gneissic rocks, to study the field and petrogenetic aspects of graphite mineralization in the MGB, to establish and re-evaluate the P-T conditions of formation of the rocks with the aid of thermbarometric computations and to compare with the earlier studies, characterization of graphite with XRD, Raman spectroscopy and isotope studies together with a search in to its genesis and its relation to the high-grade metamorphism of the terrain, to evaluate the role of CO2 bearing fluids in the processes of charnockitization as well as in the genesis of graphite within the high-grade terrain and to delineate the metamorphic geochronology of selected rocks using ‘monazite dating’ technique with EPMA.
Resumo:
Three copper(II) complexes of salicylaldehyde N(4)-phenyl thiosemicarbazone (H2L1) and two copper(II) complexes of N(4)-cyclohexyl thiosemicarbazone (H2L2) have been synthesized and characterized by different physicochemical techniques like magnetic studies and electronic, infrared and EPR spectral studies. The complexes View the MathML source and [(CuL2)2] (4) having dimeric structure. The thiosemicarbazones bind to the metal as dianionic ONS donor ligand in all the complexes, except in the complex [Cu(HL1)2] · H2O (2). In complex 2, the ligand moieties are coordinated as monoanionic (HL−) ones. Two of the complexes [CuL1dmbipy] · H2O (3) and [CuL2dmbipy] (5) have been found to possess the stoichiometry [CuLB], where B = 4,4′-dimethyl-2,2′-bipyridine (dmbipy). The coordination geometry around copper(II) in 5 is trigonal bipyramidal distorted square based pyramidal (TBDSBP), as obtained by X-ray diffraction studies.
Resumo:
Observing the wide possibilities of fluorescent dyes, an exhaustive investigation is done in laser dyes mainly focusing on Coumarin 540 which has a very strong emission in the green region. The photophysics of the dye is studied in detail in a good number of solvent environments. The results of the amplified spontaneous emission and lasing behaviour in both dye solution and different polymer solid state matrices and the ptotostability of the these matrices are investigated using the photoacoustic technique and the same are also included in this thesis. The energy transfer behaviour in dye mixtures which could be utilized for laser studies and bio-analysis are also presented. The nonlinear characterization of Coumarin540 forms the last part of the experimental investigations presented in the thesis.
Resumo:
This thesis Entitled phenylethynylarene based Donor-Acceptor systems:Desigh,Synthesis and Photophysical studies. A strategy for the design of donor-acceptor dyads, wherein decay of the charge separated (CS) state to low lying local triplet levels could possibly be prevented, is proposed. In order to examine this strategy, a linked donor-acceptor dyad BPEPPT with bis(phenylethYlly/)pyrene (BPEP) as the light absorber and acceptor and phenothiazine (PT) as donor was designed and photoinduced electron transfer in the dyad investigated. Absorption spectra of the dyad can be obtained by adding contributions due 10 the BPEP and PT moieties indicating that the constituents do not interact in the ground stale. Fluorescence of the BPEP moiety was efficiently quenched by the PT donor and this was attributed to electron lransfer from PT to BPEP. Picosecond transient absorption studies suggested formation of a charge separated state directly from the singlet excited state of BPEP. Nanosecond flash photolysis experiments gave long-ived transient absorptions assignable to PT radical cation and BPEP radical anion. These assignments were confirmed by oxygen quenching studies and secondary electron transfer experiments. Based on the available data, energy level diagram for BPEP-PT was constructed. The long lifetime of the charge separated state was attributed to the inverted region effects. The CS state did not undergo decay to low lying BPEP triplet indicating the success of our strategy
Resumo:
Reducing fishing pressure in coastal waters is the need of the day in the Indian marine fisheries sector of the country which is fast changing from a mere vocational activity to a capital intensive industry. It requires continuous monitoring of the resource exploitation through a scientifically acceptable methodology, data on production of each species stock, the number and characteristics of the fishing gears of the fleet, various biological characteristics of each stock, the impact of fishing on the environment and the role of fishery—independent on availability and abundance. Besides this, there are issues relating to capabilities in stock assessment, taxonomy research, biodiversity, conservation and fisheries management. Generation of reliable data base over a fixed time frame, their analysis and interpretation are necessary before drawing conclusions on the stock size, maximum sustainable yield, maximum economic yield and to further implement various fishing regulatory measures. India being a signatory to several treaties and conventions, is obliged to carry out assessments of the exploited stocks and manage them at sustainable levels. Besides, the nation is bound by its obligation of protein food security to people and livelihood security to those engaged in marine fishing related activities. Also, there are regional variabilities in fishing technology and fishery resources. All these make it mandatory for India to continue and strengthen its marine capture fisheries research in general and deep sea fisheries in particular. Against this background, an attempt is made to strengthen the deep sea fish biodiversity and also to generate data on the distribution, abundance, catch per unit effort of fishery resources available beyond 200 m in the EEZ of southwest coast ofIndia and also unravel some of the aspects of life history traits of potentially important non conventional fish species inhabiting in the depth beyond 200 m. This study was carried out as part of the Project on Stock Assessment and Biology of Deep Sea Fishes of Indian EEZ (MoES, Govt. of India).
Resumo:
People in several parts of the world as well in India countenance an immense confront to meet the basic needs of water. The crisis is not due to lack of fresh water but its availability in adequate superiority. Environmental quality objectives should be developed in order to define acceptable loads on the terrain. There has been a number of initiatives in water quality monitoring but the next step towards improving its quality hasn’t taken the required pace. Today, there is a growing need to create awareness among citizens on the different technologies available for improving the water quality. Monitoring facilitate to apprehend how land and water use distress the quality of water and assist in estimating the extent of pollution. Once these issues are recognized, people can work towards local solutions to manage the indispensable resource effectively. Ground waters are extremely precious resources and in many countries together with India they represent the most important drinking water supply. They are generally microbiologically pure and, in most cases, they do not need any treatment. This communiqué is intended to act as a channel on the various paraphernalia and techniques accessible for groundwater quality assessment and suggesting the assured precautionary measures to embark on environment management. This learning is imperative considering that groundwater as the exclusive source of drinking water in the region which not makes situation alarming but also calls for immediate attention. The scope of this work is somewhat vast. Water quality in Ernakulam district is getting deteriorated due to the fast growth of urbanization. The closure of several water bodies due to land development and construction prevents infiltration of rainwater into the ground and hence recharge the aquifers. Most of the aquifers are getting polluted from the industrial effluents and chemicals and fertilizers used in agriculture. Such serious issues require proper monitoring of groundwater and steps are to be taken for remedial measures. This study helps in the total protection of the rich resource of groundwater and its sustainability. Socio-economic aspect covered could be used for conducting further individual case studies and to suggest remedial measures on a scientific basis. The specific study taken up for 15 sites can be further extended to the sources of pollution, especially industrial and agriculture
Resumo:
Everywhere, on the coastal belt it is proved without doubt that the pristine ground water quality was severely deteriorated after the 26 December 2004 Indian Ocean Tsunami. But how far is more relevant, as it is decided by the so-called pre-tsunamic situation of the region. In water quality studies it is this reference finger print which earmarks regional ground water chemistry based on which the monthly variability could rationally be interpreted. This Ph D thesis comprises the testing and evaluation of the facts: whether there is any significant difference in the water quality parameters under study between stations and between months in Tsunami Affected Dug Wells (TADW). Whether the selected water quality parameters vary significantly from BIS and WHO standards. Whether the water quality index (WQI) differ significantly between Tsunami Affected Dug Wells (TADW) and Bore Wells (BW). Whether there is any significant difference in the water quality parameters during December 2005 and December 2008. Is there any significant change in the Water Quality Parameters before 2001 and after tsunami (2005) in TADW.
Resumo:
Ten new copper(II) complexes of five potential bisthiocarbohydrazone and biscarbohydrazone ligands were synthesized and physico-chemically characterized. The spectral and magnetic studies of compounds are consistent with the formation of asymmetric di-, tri- or tetranuclear copper(II) complexes of deprotonated forms of respective ligands. The variable temperature magnetic susceptibility measurements of all complexes showantiferromagnetic interactions between the Cu(II) centers, in agreement with very broad powder EPR spectra. However, frozen solution EPR spectral studies are found in contradiction with the solid-state magnetic studies and indicate that the complexes are not very stable in solutions; the possible fragmentations of complexes are found in agreement with MALDI MS results. The EPR spectral simulation of most of the compounds is in agreement with the presence of two uncoupled Cu(II) species in solution.
Resumo:
From the early stages of the twentieth century, polyaniline (PANI), a well-known and extensively studied conducting polymer has captured the attention of scientific community owing to its interesting electrical and optical properties. Starting from its structural properties, to the currently pursued optical, electrical and electrochemical properties, extensive investigations on pure PANI and its composites are still much relevant to explore its potentialities to the maximum extent. The synthesis of highly crystalline PANI films with ordered structure and high electrical conductivity has not been pursued in depth yet. Recently, nanostructured PANI and the nanocomposites of PANI have attracted a great deal of research attention owing to the possibilities of applications in optical switching devices, optoelectronics and energy storage devices. The work presented in the thesis is centered around the realization of highly conducting and structurally ordered PANI and its composites for applications mainly in the areas of nonlinear optics and electrochemical energy storage. Out of the vast variety of application fields of PANI, these two areas are specifically selected for the present studies, because of the following observations. The non-linear optical properties and the energy storing properties of PANI depend quite sensitively on the extent of conjugation of the polymer structure, the type and concentration of the dopants added and the type and size of the nano particles selected for making the nanocomposites. The first phase of the work is devoted to the synthesis of highly ordered and conducting films of PANI doped with various dopants and the structural, morphological and electrical characterization followed by the synthesis of metal nanoparticles incorporated PANI samples and the detailed optical characterization in the linear and nonlinear regimes. The second phase of the work comprises the investigations on the prospects of PANI in realizing polymer based rechargeable lithium ion cells with the inherent structural flexibility of polymer systems and environmental safety and stability. Secondary battery systems have become an inevitable part of daily life. They can be found in most of the portable electronic gadgets and recently they have started powering automobiles, although the power generated is low. The efficient storage of electrical energy generated from solar cells is achieved by using suitable secondary battery systems. The development of rechargeable battery systems having excellent charge storage capacity, cyclability, environmental friendliness and flexibility has yet to be realized in practice. Rechargeable Li-ion cells employing cathode active materials like LiCoO2, LiMn2O4, LiFePO4 have got remarkable charge storage capacity with least charge leakage when not in use. However, material toxicity, chance of cell explosion and lack of effective cell recycling mechanism pose significant risk factors which are to be addressed seriously. These cells also lack flexibility in their design due to the structural characteristics of the electrode materials. Global research is directed towards identifying new class of electrode materials with less risk factors and better structural stability and flexibility. Polymer based electrode materials with inherent flexibility, stability and eco-friendliness can be a suitable choice. One of the prime drawbacks of polymer based cathode materials is the low electronic conductivity. Hence the real task with this class of materials is to get better electronic conductivity with good electrical storage capability. Electronic conductivity can be enhanced by using proper dopants. In the designing of rechargeable Li-ion cells with polymer based cathode active materials, the key issue is to identify the optimum lithiation of the polymer cathode which can ensure the highest electronic conductivity and specific charge capacity possible The development of conducting polymer based rechargeable Li-ion cells with high specific capacity and excellent cycling characteristics is a highly competitive area among research and development groups, worldwide. Polymer based rechargeable batteries are specifically attractive due to the environmentally benign nature and the possible constructional flexibility they offer. Among polymers having electrical transport properties suitable for rechargeable battery applications, polyaniline is the most favoured one due to its tunable electrical conducting properties and the availability of cost effective precursor materials for its synthesis. The performance of a battery depends significantly on the characteristics of its integral parts, the cathode, anode and the electrolyte, which in turn depend on the materials used. Many research groups are involved in developing new electrode and electrolyte materials to enhance the overall performance efficiency of the battery. Currently explored electrolytes for Li ion battery applications are in liquid or gel form, which makes well-defined sealing essential. The use of solid electrolytes eliminates the need for containment of liquid electrolytes, which will certainly simplify the cell design and improve the safety and durability. The other advantages of polymer electrolytes include dimensional stability, safety and the ability to prevent lithium dendrite formation. One of the ultimate aims of the present work is to realize all solid state, flexible and environment friendly Li-ion cells with high specific capacity and excellent cycling stability. Part of the present work is hence focused on identifying good polymer based solid electrolytes essential for realizing all solid state polymer based Li ion cells.The present work is an attempt to study the versatile roles of polyaniline in two different fields of technological applications like nonlinear optics and energy storage. Conducting form of doped PANI films with good extent of crystallinity have been realized using a level surface assisted casting method in addition to the generally employed technique of spin coating. Metal nanoparticles embedded PANI offers a rich source for nonlinear optical studies and hence gold and silver nanoparticles have been used for making the nanocomposites in bulk and thin film forms. These PANI nanocomposites are found to exhibit quite dominant third order optical non-linearity. The highlight of these studies is the observation of the interesting phenomenon of the switching between saturable absorption (SA) and reverse saturable absorption (RSA) in the films of Ag/PANI and Au/PANI nanocomposites, which offers prospects of applications in optical switching. The investigations on the energy storage prospects of PANI were carried out on Li enriched PANI which was used as the cathode active material for assembling rechargeable Li-ion cells. For Li enrichment or Li doping of PANI, n-Butyllithium (n-BuLi) in hexanes was used. The Li doping as well as the Li-ion cell assembling were carried out in an argon filled glove box. Coin cells were assembled with Li doped PANI with different doping concentrations, as the cathode, LiPF6 as the electrolyte and Li metal as the anode. These coin cells are found to show reasonably good specific capacity around 22mAh/g and excellent cycling stability and coulombic efficiency around 99%. To improve the specific capacity, composites of Li doped PANI with inorganic cathode active materials like LiFePO4 and LiMn2O4 were synthesized and coin cells were assembled as mentioned earlier to assess the electrochemical capability. The cells assembled using the composite cathodes are found to show significant enhancement in specific capacity to around 40mAh/g. One of the other interesting observations is the complete blocking of the adverse effects of Jahn-Teller distortion, when the composite cathode, PANI-LiMn2O4 is used for assembling the Li-ion cells. This distortion is generally observed, near room temperature, when LiMn2O4 is used as the cathode, which significantly reduces the cycling stability of the cells.
Resumo:
Water scarcity and food insecurity are pervasive issues in the developing world and are also intrinsically linked to one another. Through the connection of the water cycle and the carbon cycle this study illustrates that synergistic benefits can be realized by small scale farmers through the implementation of waste water irrigated agroforestry. The WaNuLCAS model is employed using La Huerta agroforestry site in Texcoco, South Central Mexico, as the basis for parameterization. The results of model simulations depicting scenarios of water scarcity and waste water irrigation clearly show that the addition of waste water greatly increases the agroforestry system’s generation of crop yields, above- and below-ground biomass, soil organic matter and carbon storage potential. This increase in carbon sequestration by the system translates into better local food security, diversified household income through payments for ecosystem services and contributes to the mitigation of global climate change.
Resumo:
La asignatura troncal “Evaluación Psicológica” de los estudios de Psicología y del estudio de grado “Desarrollo humano en la sociedad de la información” de la Universidad de Girona consta de 12 créditos según la Ley Orgánica de Universidades. Hasta el año académico 2004-05 el trabajo no presencial del alumno consistía en la realización de una evaluación psicológica que se entregaba por escrito a final de curso y de la cual el estudiante obtenía una calificación y revisión si se solicitaba. En el camino hacia el Espacio Europeo de Educación Superior, esta asignatura consta de 9 créditos que equivalen a un total de 255 horas de trabajo presencial y no presencial del estudiante. En los años académicos 2005-06 y 2006-07 se ha creado una guía de trabajo para la gestión de la actividad no presencial con el objetivo de alcanzar aprendizajes a nivel de aplicación y solución de problemas/pensamiento crítico (Bloom, 1975) siguiendo las recomendaciones de la Agencia para la Calidad del Sistema Universitario de Cataluña (2005). La guía incorpora: los objetivos de aprendizaje, los criterios de evaluación, la descripción de las actividades, el cronograma semanal de trabajos para todo el curso, la especificación de las tutorías programadas para la revisión de los diversos pasos del proceso de evaluación psicológica y el uso del foro para el conocimiento, análisis y crítica constructiva de las evaluaciones realizadas por los compañeros
Resumo:
This 11-minute video focuses on how self and peer assessment could be used as an integral part of CIP modules, and discusses some innovative methods for assessing written work. The first link is to the native Panopto podcast, which requires the Silverlight player to be installed. The second link is the MP4 video version of the podcast, which should play on all PCs, Macs and suitable mobile devices. This share also includes links to the papers discussed in the video - these are also provided at the end of the script.
Resumo:
El presente proyecto tiene como objeto identificar cuáles son los conceptos de salud, enfermedad, epidemiología y riesgo aplicables a las empresas del sector de extracción de petróleo y gas natural en Colombia. Dado, el bajo nivel de predicción de los análisis financieros tradicionales y su insuficiencia, en términos de inversión y toma de decisiones a largo plazo, además de no considerar variables como el riesgo y las expectativas de futuro, surge la necesidad de abordar diferentes perspectivas y modelos integradores. Esta apreciación es pertinente dentro del sector de extracción de petróleo y gas natural, debido a la creciente inversión extranjera que ha reportado, US$2.862 millones en el 2010, cifra mayor a diez veces su valor en el año 2003. Así pues, se podrían desarrollar modelos multi-dimensional, con base en los conceptos de salud financiera, epidemiológicos y estadísticos. El termino de salud y su adopción en el sector empresarial, resulta útil y mantiene una coherencia conceptual, evidenciando una presencia de diferentes subsistemas o factores interactuantes e interconectados. Es necesario mencionar también, que un modelo multidimensional (multi-stage) debe tener en cuenta el riesgo y el análisis epidemiológico ha demostrado ser útil al momento de determinarlo e integrarlo en el sistema junto a otros conceptos, como la razón de riesgo y riesgo relativo. Esto se analizará mediante un estudio teórico-conceptual, que complementa un estudio previo, para contribuir al proyecto de finanzas corporativas de la línea de investigación en Gerencia.