972 resultados para 300505 Anatomy and Physiology
Resumo:
(CO2)-C-14 production from [1-C-14] glucose, the rate of glycolysis measured by the value of lactate production and the activities of various enzymes were determined in buffalo erythrocytes. Buffalo red cell glycolytic metabolites were estimated and used for the calculation of the mass action ratios of reactions catalyzed by the glycolytic enzymes of Bubalus bubalis. A comparison of the values of the mass action ratios with the equilibrium constants of the various glycolytic reactions indicate that hexokinase, phosphofructokinase, phosphoglycerate kinase and pyruvate kinase reactions are displaced from equilibrium, suggesting a regulatory role for each of these enzymes in buffalo erythrocyte glycolysis. (C) 1997 Elsevier B.V.
Resumo:
The effect of macrophage blockade on the natural resistance and on the adaptative immune response of susceptible (B10.D2/oSn) and resistant (A/Sn) mice to Paracoccidioides brasiliensis infection was investigated. B10.D2/oSn and A/Sn mice previously injected with colloidal carbon were infected ip with yeast cells to determine the 50% lethal dose, and to evaluate the anatomy and histopathology, macrophage activation, antibody production and DTH reactions. Macrophage blockade rendered both resistant and susceptible mice considerably more susceptible to infection, as evidenced by increased mortality and many disseminated lesions. P. brasiliensis infection and/or carbon treatment increased the ability of macrophages from resistant mice to spread up to 25 days after treatment. In susceptible mice the enhanced spreading capacity induced by carbon treatment was impaired at ail assayed periods except at 1 week after infection. Macrophage blockade enhanced DTH reactions in resistant mice, but did not alter these reactions in susceptible mice, which remained anergic. To the contrary, macrophage blockade enhanced specific antibody production by susceptible mice, but did nor affect the low levels produced by resistant mice. The effect of macrophage blockade confirms the natural tendency of resistant animals to mount DTH reactions in the course of the disease and the preferential antibody response developed by susceptible mice after P. brasiliensis infection. on the whole, macrophage functions appear to play a fundamental role in the natural and acquired resistance mechanisms to P. brasiliensis infection.
Resumo:
Stroma-epithelium relationships are of great relevance in prostatic morphogenesis and physiology, However, little knowledge exists about either stromal cells or extracellular matrix composition and arrangement in this system, Ultrastructural analysis revealed the existence of a microfibrillar system which occupies large areas of the rat prostatic stroma, In this work, we have applied immunocytochemistry and an ATP treatment for the ultrastructural identification of collagen type VI microfibrils, aiming at examining its participation in the prostatic microfibrillar network. Immunocytochemistry was also extended to a human case of prostatic nodular hyperplasia, Both methods succeeded in identifying collagen type VI in the rat ventral prostate, Collagen type VI is evenly distributed throughout the stroma but mainly associated with the basal lamina, collagen fibrils, and around the stromal cells, the use of ATP treatment allowed for the discrimination between collagen type VI and elastin-associated microfibrils, and demonstrated that these two classes of microfibrils establish an extended, mixed, and open network. The same aspects of association with the basal lamina, with stromal cells (particularly with smooth muscle cells), and with fibrillar components of the stroma were observed in the human tissue, We suggest that the collagen type VI and elastin-associated microfibril system may be involved in the control of some aspects of cellular behavior and may also play a structural role, maintaining the organ integrity after the deformations occurring under smooth muscle contraction.
Resumo:
1. Increased levels of bone alkaline phosphatase activity were observed in diabetic rats. These animals exhibited impaired bone development without concomitant alterations of the sequence of cellular transformations.2. Alkaline phosphatase activity was delayed in diabetic rats but the kinetic parameters for the hydrolysis of p-Nitrophenylphosphate (PNPP) were virtually the same observed for controls (N = 1.2 and K0.5 = 43 muM).3. Alkaline phosphatase from diabetic rats had a better affinity (K0.5 = 38 muM) for magnesium ions than controls (K0.5 = 9 1 muM).4. Zinc ions affected alkaline phosphatase activity from control and diabetic rats in the same way (K0.5 = 10 muM).
Resumo:
Background: the purpose of this study was to histologically evaluate the healing of experimental dehiscence defects after surface demineralization with tetracycline hydrochloride.Methods: Six adult male monkeys (Cebus apella) were used in this study. Dehiscence defects were surgically created on the buccal aspect of the mandibular lateral incisors in all animals. The root surfaces were debrided and planed. In a split-mouth design, a 10% tetracycline hydrochloride solution was applied to one tooth for 4 minutes (T group), followed by irrigation with saline. The contralateral tooth served as a control (C group). The flaps were repositioned and sutured. The animals were sacrificed at 6 months postoperatively and histological sections were processed. Computer-assisted histomorphometric analysis was used to evaluate the formation of new cementum, new bone, new connective tissue attachment, and length of the epithelium (junctional and sulcular).Results: Bone regeneration was similar in both groups (1.5 +/- 0.3 mm for the T group and 1.5 +/- 0.6 mm for the C group). The C group showed more new cementum than the T group (2.3 +/- 0.3 mm versus 2.2 +/- 0.3 mm) as well as a longer epithelium (1.0 +/- 0.3 mm versus 0.9 +/- 0.2 mm). The T group presented more new connective tissue attachment (3.1 +/- 0.2 mm) than the C group (2.9 +/- 0.6 mm). However, no statistically significant differences were detected between the two groups.Conclusions: the amount of new attachment was similar in both groups. Root conditioning with 10% tetracycline solution did not produce any additional new attachment in comparison to the controls.
Resumo:
Cisplatin is a potent drug used in clinical oncology but causes spermatogenesis damage. Amifostine is a drug used against toxicity caused by ionizing irradiation and chemotherapeutic drugs. Since cisplatin provokes fertility and induces germ cell apoptosis and necrosis, we proposed to evaluate the amifostine cytoprotective action on testes of cisplatin-treated rats. Thirty-day-old prepubertal Wistar rats received a single cisplatin dose of 5 mg/kg and were killed after 3, 6, and 12 hr. The hematoxylin-eosin stained testicular sections were submitted to histological, morphometric, and stereological analysis. The terminal deoxynucleotidyl transferase-mediated deoxyuridinetriphosphate nick end-labeling (TUNEL) method was used to label apoptotic cells. TUNEL-positive and TUNEL-negative germ cells with abnormal nuclear morphology (ANM) were scored. Significant alterations of greater part of the parameters occurred in the cisplatin-treated group (CE) compared to the group that received amifostine before the cisplatin-treatment (ACE); however, testicular weight and volume did not vary between these groups. Tubular diameter was reduced in CE in comparison to ACE rats, while interstitial tissue and lymphatic space volume and volume density were significantly higher in CE rats; interstitial testicular edema probably occurred in cisplatin-treated rats. CE rats showed important histological alterations, which were more accentuated than in ACE rats. The numerical densities of apoptotic germ cells and TUNEL-negative cells with ANM were lower in ACE than in CE rats. In conclusion, the amifostine previously administered to prepubertal rats reduced the testicular damage caused by cisplatin. We conclude that amifostine partially protected the rat seminiferous epithelium against cisplatin toxicity.
Resumo:
Photosynthesis is the single most important source of 02 and organic chemical energy necessary to support all non-autotrophic life forms. Plants compartmentalize this elaborate biochemical process within chloroplasts in order to safely harness the power of solar energy and convert it into usable chemical units. Stresses (biotic or abiotic) that challenge the integrity of the plant cell are likely to affect photosynthesis and alter chlorophyll fluorescence. A simple three-step assay was developed to test selected herbicides representative of the known herbicide mechanisms of action and a number of natural phytotoxins to determine their effect on photosynthesis as measured by chlorophyll fluorescence. The most active compounds were those interacting directly with photosynthesis (inhibitors of photosystem I and II), those inhibiting carotenoid synthesis, and those with mechanisms of action generating reactive oxygen species and lipid peroxidation (uncouplers and inhibitors of protoporphyrinogen oxidase). Other active compounds targeted lipids (very-long-chain fatty acid synthase and removal of cuticular waxes). Therefore, induced chlorophyll fluorescence is a good biomarker to help identify certain herbicide modes of action and their dependence on light for bioactivity. Published by Elsevier B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Introduction. Pitaya (Hylocereus undatus) is an exotic fruit species little known in Brazil and which needs basic studies about plant nutrition, propagation and physiology. Emphasizing the co-existence of juvenile and adult stages in the pitaya canopy, the plant is generally propagated by cuttings. Materials and methods. A completely randomized design with four treatments and five replications was adopted. Each treatment was represented by the part of the canopy from which the cutting was taken ( upper, middle and lower cutting and cuttings from young plants). The following variables were registered: % cuttings with roots, % of live cuttings, root density, root diameter, root area, root length and root dry mass. Results were submitted to variance analyses, Tukey's test at 0.01 probability error and simple correlation analysis. Results and discussion. The results indicated that the position from which the cutting is taken had a quantitative effect on rooting formation of pitaya cuttings. Juvenile cuttings presented 35% more cuttings with roots than adult cuttings. Root density, root area, root length and root dry mass depended on juvenility, the highest results being registered for juvenile cuttings, independently of the variable. Conclusion. Juvenile and adult stages co-exist in the pitaya canopy. Juvenility is an important rooting factor for red pitaya cuttings.