942 resultados para 291605 Processor Architectures


Relevância:

10.00% 10.00%

Publicador:

Resumo:

An optical diagnostic system consisting of the Michelson interferometer with the image processor has been developed for the study of the kinetics of the thermal capillary convection. The capillary convection, surface deformation, surface wave and the velocity field in a rectangular cavity with different temperature's sidewalls have been investigated by optical interference method and PIV technique. In order to calculate the surface deformation from the interference fringe, Fourier transformation is used to grating analysis. The quantitative results of the surface deformation and surface wave have been calculated from the interference fringe pattern.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An optical diagnostic system consisting of the Mach-Zehnder interferometer with the phase shift device and an image processor has been developed for the study of the kinetics of the crystal growing process. The dissolution and crystallization process of NaClO3 crystal has been investigated. The concentration distributions around a growing and dissolving crystal have been obtained by using phase-shift of four-steps theory for the interpretation of the interferograms. The convection (a plume flow) has been visualized and analyzed in the process of the crystal growth. The experiment demonstrates that the buoyancy convection dominates the growth rate of the crystal growing face on the ground-based experiment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Free surface deformation is one of the most important physical phenomena in fluids with free surface. In the present paper, convection and surface deformation caused by thermocapillary effect in a rectangular cavity were investigated. In ground experiments, the convection was also affected by gravity. The cavity has a horizontal cross section of 52mm×42mm and the thikkness of the liquid layer is 4mm. Temperature difference between two sides of the liquid layer was increased gradually, and the flow in liquid layer will develop from steady to unstable convection. An optical diagnostic system consisting of a revised Michelson interferometer with image processor was developed to study fluid surface deformation in convection, and the displacements of free surface oscillation were determined. PIV technique was adopted to observe the evolution of flow pattern, and the velocity fields were obtained quantitatively. The present experiments demonstrate that surface deformation is quite distinct in buoyant-thermocapillary convection. in order to understand the mechanism of buoyant-thermocapillary convection, not only the hydrothermal wave instability but also the surface wave instability should be discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The optical interference method is a promising technique for measuring temperature, density, and concentration in fluids. The non-intrusive and non-invasive nature of its optical techniques to the measured section are its most outstanding features. However, the adverse experiment environment, especially regarding shaking and vibrating, greatly restricts the application of the interferometer. In the present work, an optical diagnostic system consisting of a Mach-Zehnder interferometer (named after physicists Ludwig Mach) and an image processor has been developed that increases the measuring sensitivity compared to conventional experimental methods in fluid mechanics. An image processor has also been developed for obtaining quantitative results by using Fourier transformation. The present facility has been used in observing and measuring the mass transfer process of a water droplet in EAFP protein solution under microgravity condition provided by the satellite Shi Jian No. 8.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports that an optical diagnostic system consisting of Mach-Zehnder interferometer with a phase shift device and image processor has been used for study of the kinetics of protein crystal growing process. The crystallization process of protein crystal by vapour diffusion is investigated. The interference fringes are observed in real time. The present experiment demonstrates that the diffusion and the sedimentation influence the crystallization of protein crystal which grows in solution, and the concentration capillary convection associated with surface tension occurs at the vicinity of free surface of the protein mother liquor, and directly affects on the outcome of protein crystallization. So far the detailed analysis and the important role of the fluid phenomena in protein crystallization have been discussed a little in both space- and ground-based crystal growth experiments. It is also found that these fluid phenomena affect the outcome of protein crystallization, regular growth, and crystal quality. This may explain the fact that many results of space-based investigation do not show overall improvement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the surface deformations of buoyant-thermocapillary convection in a rectangular cavity clue to gravity and temperature gradient between the two sidewalls. The cavity is 52mm x 42mm in horizontal cross section, the thickness of liquid layer h is changed from 2.5mm to 6.5mm. Surface deformations of h = 3.5mm and 6.0mm are discussed and compared. Temperature difference is increased gradually, and the flow in the liquid layer will change from stable convection to unstable convection. Two kinds of optical diagnostic system with image processor are developed for study of the kinetics of buoyant-thermocapillary convection, they give out the information of liquid free surface. The quantitative results are calculated by Fourier transform and correlation analysis, respectively. With the increasing temperature gradient, surface deformations calculated are more declining. It is interesting phenomenon that the inclining directions of the convections in thin and thick liquid layers are different. For a thin layer, the convection is mainly controlled by thermocapillary effect. However, for a thick layer, the convection is mainly controlled by buoyancy effect. The surface deformation theoretically analysed is consistent with our experimental results. The present experiment proves that surface deformation is related to temperature gradient and thickness of the liquid layer. In other words, surface deformation lies on capillary convection and buoyancy convection.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper provides a new model of network formation that bridges the gap between the two benchmark models by Bala and Goyal, the one-way flow model, and the two-way flow model, and includes both as particular extreme cases. As in both benchmark models, in what we call an "asymmetric flow" network a link can be initiated unilaterally by any player with any other, and the flow through a link towards the player who supports it is perfect. Unlike those models, in the opposite direction there is friction or decay. When this decay is complete there is no flow and this corresponds to the one-way flow model. The limit case when the decay in the opposite direction (and asymmetry) disappears, corresponds to the two-way flow model. We characterize stable and strictly stable architectures for the whole range of parameters of this "intermediate" and more general model. We also prove the convergence of Bala and Goyal's dynamic model in this context.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An optical diagnostic system consisting of Michelson interferometer with image processor has been developed for study of the kinetics of thermal capillary convection and buoyancy convection. This optical interferometer has been used to observe and measure surface deformation and surface wave of capillary convection and buoyancy convection in a rectangular cavity with different temperature’s sidewalls. Fourier transformation is used to image processing. The quantitative results of surface deformation and surface wave have been calculated from the interference fringe pattern. With the increasing of temperature gradient, the liquid surface slant gradually. It’s deformation has been calculated, which is related directly with temperature gradient. This is one of the characters introducing convection. Another interesting phenomenon is the inclining direction, which is different when the liquid layer is thin or thick. When the liquid layer is thin, convection is mainly controlled by thermocapillary effect. However, When the liquid layer is thick, convection is mainly controlled by buoyancy effect. Surface deformation in the present experiment are more and more declining in this process. The present experiment proved that surface deformation appears before the appearance of surface wave on fluid convection, it is related with temperature gradient, and the height of liquid layer, and lies on capillary convection and buoyancy convection. The present experiment also demonstrates that the amplitude of surface wave of thermocapillary-buoyancy convection is much smaller than surface deformation, the wave is covered by deformation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An optical diagnostic system consisting of the Michelson interferometer with the image processor has been developed for studying of the surface wave in the thermal capillary convection in a rectangular cavity. In this paper, the capillary convection, surface deformation and surface wave due to the different temperature between the two sidewalls have been investigated. The cavity is 52mm?42mm in horizontal cross section and 4mm in height. The temperature difference is increased gradually and flow in liquid layer will change from steady convection to unstable convection. The optical interference method measures the surface deformation and the surface wave of the convection. The deformation of the interference fringes, which produced by the meeting of the reflected light from the liquid surface and the reference light has been captured, and the surface deformation appears when the steady convection is developed. The surface deformation is enhanced with the increasing of the temperature difference, and then several knaggy peeks in the interference fringes appear and move from the heated side to the cooled side, it demonstrates that the surface wave is existed. The surface deformation, the wavelength, the frequency, and the wave amplitude of the surface wave have been calculated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traditional software development captures the user needs during the requirement analysis. The Web makes this endeavour even harder due to the difficulty to determine who these users are. In an attempt to tackle the heterogeneity of the user base, Web Personalization techniques are proposed to guide the users’ experience. In addition, Open Innovation allows organisations to look beyond their internal resources to develop new products or improve existing processes. This thesis sits in between by introducing Open Personalization as a means to incorporate actors other than webmasters in the personalization of web applications. The aim is to provide the technological basis that builds up a trusty environment for webmasters and companion actors to collaborate, i.e. "an architecture of participation". Such architecture very much depends on these actors’ profile. This work tackles three profiles (i.e. software partners, hobby programmers and end users), and proposes three "architectures of participation" tuned for each profile. Each architecture rests on different technologies: a .NET annotation library based on Inversion of Control for software partners, a Modding Interface in JavaScript for hobby programmers, and finally, a domain specific language for end-users. Proof-of-concept implementations are available for the three cases while a quantitative evaluation is conducted for the domain specific language.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is an increasing number of Ambient Intelligence (AmI) systems that are time-sensitive and resource-aware. From healthcare to building and even home/office automation, it is now common to find systems combining interactive and sensing multimedia traffic with relatively simple sensors and actuators (door locks, presence detectors, RFIDs, HVAC, information panels, etc.). Many of these are today known as Cyber-Physical Systems (CPS). Quite frequently, these systems must be capable of (1) prioritizing different traffic flows (process data, alarms, non-critical data, etc.), (2) synchronizing actions in several distributed devices and, to certain degree, (3) easing resource management (e.g., detecting faulty nodes, managing battery levels, handling overloads, etc.). This work presents FTT-MA, a high-level middleware architecture aimed at easing the design, deployment and operation of such AmI systems. FTT-MA ensures that both functional and non-functional aspects of the applications are met even during reconfiguration stages. The paper also proposes a methodology, together with a design tool, to create this kind of systems. Finally, a sample case study is presented that illustrates the use of the middleware and the methodology proposed in the paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A sliding mode position control for high-performance real-time applications of induction motors in developed in this work. The design also incorporates a simple flux estimator in order to avoid the flux sensors. Then, the proposed control scheme presents a low computational cost and therefore can be implemented easily in a real-time applications using a low cost DSP-processor. The stability analysis of the controller under parameter uncertainties and load disturbances in provided using Lyapunov stability theory. Finally, simulated and experimental results show that the proposed controller with the proposed observer provides a good trajectory tracking and that this scheme is robust with respect to plant parameter variations and external load disturbances.