981 resultados para 2415: equatorial ionosphere


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Los supervisores en todo el mundo están reconociendo, de manera creciente, la importancia de asegurarse que sus bancos tengan instalados controles y procedimientos adecuados que permitan el logro de los objetivos, la utilización eficiente de los recursos, además de prevenir fraudes, errores, violación a principios y normas contables, políticas y procedimientos, etc. Una adecuada diligencia sobre estos aspectos es una parte clave de estos controles. Sin esta diligencia debida, los bancos pueden llegar a estar sujetos a riesgos inherentes a su actividad tales como riesgo de crédito, liquidez, tasa y mercado, reputación, operativos, legales y de control. El objetivo, por lo tanto, es que cada organización identifique, evalúe y entienda sus riesgos para aminorarlos por medio del diseño e implantación de controles efectivos, de forma tal que le permitan mantener la calidad de sus productos o servicios. Bajo este contexto, en la actualidad las instituciones del sistema financiero ecuatoriano, que pretenda alcanzar el éxito, deben identificar y administrar los riesgos eficientemente a través de un adecuado control interno. El presente trabajo tiene como objetivo central, proporcionar un panorama general sobre la importancia de los controles internos y la administración de riesgos en la banca privada de tamaño mediana y pequeña, y como ambos se relacionan en la evaluación de riesgo de un banco; además, concienciar a todas las organizaciones, respecto de la importancia de mantener en la entidad un adecuado sistema de control interno, ya que el mismo se constituye en la base del proceso de Administración de Riesgos, mediante el cual la entidad se asegura el logro de objetivos en las áreas de efectividad y eficiencia en las operaciones, confiabilidad en la información financiera y el cumplimiento de las leyes y regulaciones aplicables. La tesis consta de cinco capítulos organizados en forma sistemática: el primer capítulo contiene el marco conceptual de los enfoques tradicionales y contemporáneo sobre control interno; el segundo capítulo hace referencia al control interno como un medio eficaz para la toma de decisiones en el control de la gestión; el tercer capítulo se relaciona con la administración de riesgo y el control interno; el cuarto capítulo desarrolla un caso de estudio en el cual se aplica los cuestionarios COSO y administración de riesgos de crédito; y, en el quinto capítulo se incluyen las conclusiones y recomendaciones.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A coupled ocean–atmosphere general circulation model is used to investigate the modulation of El Niño–Southern Oscillation (ENSO) variability due to a weakened Atlantic thermohaline circulation (THC). The THC weakening is induced by freshwater perturbations in the North Atlantic, and leads to a well-known sea surface temperature dipole and a southward shift of the intertropical convergence zone (ITCZ) in the tropical Atlantic. Through atmospheric teleconnections and local coupled air–sea feedbacks, a meridionally asymmetric mean state change is generated in the eastern equatorial Pacific, corresponding to a weakened annual cycle, and westerly anomalies develop over the central Pacific. The westerly anomalies are associated with anomalous warming of SST, causing an eastward extension of the west Pacific warm pool particularly in August–February, and enhanced precipitation. These and other changes in the mean state lead in turn to an eastward shift of the zonal wind anomalies associated with El Niño events, and a significant increase in ENSO variability. In response to a 1-Sv (1 Sv ≡ 106 m3 s−1) freshwater input in the North Atlantic, the THC slows down rapidly and it weakens by 86% over years 50–100. The Niño-3 index standard deviation increases by 36% during the first 100-yr simulation relative to the control simulation. Further analysis indicates that the weakened THC not only leads to a stronger ENSO variability, but also leads to a stronger asymmetry between El Niño and La Niña events. This study suggests a role for an atmospheric bridge that rapidly conveys the influence of the Atlantic Ocean to the tropical Pacific and indicates that fluctuations of the THC can mediate not only mean climate globally but also modulate interannual variability. The results may contribute to understanding both the multidecadal variability of ENSO activity during the twentieth century and longer time-scale variability of ENSO, as suggested by some paleoclimate records.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Climate model simulations consistently show that in response to greenhouse gas forcing surface temperatures over land increase more rapidly than over sea. The enhanced warming over land is not simply a transient effect, since it is also present in equilibrium conditions. We examine 20 models from the IPCC AR4 database. The global land/sea warming ratio varies in the range 1.36–1.84, independent of global mean temperature change. In the presence of increasing radiative forcing, the warming ratio for a single model is fairly constant in time, implying that the land/sea temperature difference increases with time. The warming ratio varies with latitude, with a minimum in equatorial latitudes, and maxima in the subtropics. A simple explanation for these findings is provided, and comparisons are made with observations. For the low-latitude (40°S–40°N) mean, the models suggest a warming ratio of 1.51 ± 0.13, while recent observations suggest a ratio of 1.54 ± 0.09.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influences of a substantial weakening of the Atlantic meridional overturning circulation (AMOC) on the tropical Pacific climate mean state, the annual cycle, and ENSO variability are studied using five different coupled general circulation models (CGCMs). In the CGCMs, a substantial weakening of the AMOC is induced by adding freshwater flux forcing in the northern North Atlantic. In response, the well-known surface temperature dipole in the low-latitude Atlantic is established, which reorganizes the large-scale tropical atmospheric circulation by increasing the northeasterly trade winds. This leads to a southward shift of the intertropical convergence zone (ITCZ) in the tropical Atlantic and also the eastern tropical Pacific. Because of evaporative fluxes, mixing, and changes in Ekman divergence, a meridional temperature anomaly is generated in the northeastern tropical Pacific, which leads to the development of a meridionally symmetric thermal background state. In four out of five CGCMs this leads to a substantial weakening of the annual cycle in the eastern equatorial Pacific and a subsequent intensification of ENSO variability due to nonlinear interactions. In one of the CGCM simulations, an ENSO intensification occurs as a result of a zonal mean thermocline shoaling. Analysis suggests that the atmospheric circulation changes forced by tropical Atlantic SSTs can easily influence the large-scale atmospheric circulation and hence tropical eastern Pacific climate. Furthermore, it is concluded that the existence of the present-day tropical Pacific cold tongue complex and the annual cycle in the eastern equatorial Pacific are partly controlled by the strength of the AMOC. The results may have important implications for the interpretation of global multidecadal variability and paleo-proxy data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Integrations of a fully-coupled climate model with and without flux adjustments in the equatorial oceans are performed under 2×CO2 conditions to explore in more detail the impact of increased greenhouse gas forcing on the monsoon-ENSO system. When flux adjustments are used to correct some systematic model biases, ENSO behaviour in the modelled future climate features distinct irregular and periodic (biennial) regimes. Comparison with the observed record yields some consistency with ENSO modes primarily based on air-sea interaction and those dependent on basinwide ocean wave dynamics. Simple theory is also used to draw analogies between the regimes and irregular (stochastically forced) and self-excited oscillations respectively. Periodic behaviour is also found in the Asian-Australian monsoon system, part of an overall biennial tendency of the model under these conditions related to strong monsoon forcing and increased coupling between the Indian and Pacific Oceans. The tropospheric biennial oscillation (TBO) thus serves as a useful descriptor for the coupled monsoon-ENSO system in this case. The presence of obvious regime changes in the monsoon-ENSO system on interdecadal timescales, when using flux adjustments, suggests there may be greater uncertainty in projections of future climate, although further modelling studies are required to confirm the realism and cause of such changes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Simulations of the top-of-atmosphere radiative-energy budget from the Met Office global numerical weather-prediction model are evaluated using new data from the Geostationary Earth Radiation Budget (GERB) instrument on board the Meteosat-8 satellite. Systematic discrepancies between the model simulations and GERB measurements greater than 20 Wm-2 in outgoing long-wave radiation (OLR) and greater than 60 Wm-2 in reflected short-wave radiation (RSR) are identified over the period April-September 2006 using 12 UTC data. Convective cloud over equatorial Africa is spatially less organized and less reflective than in the GERB data. This bias depends strongly on convective-cloud cover, which is highly sensitive to changes in the model convective parametrization. Underestimates in model OLR over the Gulf of Guinea coincide with unrealistic southerly cloud outflow from convective centres to the north. Large overestimates in model RSR over the subtropical ocean, greater than 50 Wm-2 at 12 UTC, are explained by unrealistic radiative properties of low-level cloud relating to overestimation of cloud liquid water compared with independent satellite measurements. The results of this analysis contribute to the development and improvement of parametrizations in the global forecast model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The humidity in the dry regions of the tropical and subtropical troposphere has a major impact on the ability of the atmosphere to radiate heat to space. The water vapour content in these regions is determined by their ``origins'', here defined as the last condensation event following air masses. Trajectory simulations are used to investigate such origins using ERA40 data for January 1993. It is shown that 96% of air parcels experience condensation within 24 days and most of the remaining 4% originate in the stratosphere. Dry air masses are shown to experience a net pressure increase since last condensation which is uniform with latitude, while the median time taken for descent is 5 days into the subtropics but exceeds 16 days into the equatorial lower troposphere. The associated rate of decrease in potential temperature is consistent with radiative cooling. The relationship between the drier regions in the tropics and subtropics and the geographical localization of their origin is investigated. Four transport processes are identified to explain these relationships.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The impact of systematic model errors on a coupled simulation of the Asian Summer monsoon and its interannual variability is studied. Although the mean monsoon climate is reasonably well captured, systematic errors in the equatorial Pacific mean that the monsoon-ENSO teleconnection is rather poorly represented in the GCM. A system of ocean-surface heat flux adjustments is implemented in the tropical Pacific and Indian Oceans in order to reduce the systematic biases. In this version of the GCM, the monsoon-ENSO teleconnection is better simulated, particularly the lag-lead relationships in which weak monsoons precede the peak of El Nino. In part this is related to changes in the characteristics of El Nino, which has a more realistic evolution in its developing phase. A stronger ENSO amplitude in the new model version also feeds back to further strengthen the teleconnection. These results have important implications for the use of coupled models for seasonal prediction of systems such as the monsoon, and suggest that some form of flux correction may have significant benefits where model systematic error compromises important teleconnections and modes of interannual variability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The long-term stability, high accuracy, all-weather capability, high vertical resolution, and global coverage of Global Navigation Satellite System (GNSS) radio occultation (RO) suggests it as a promising tool for global monitoring of atmospheric temperature change. With the aim to investigate and quantify how well a GNSS RO observing system is able to detect climate trends, we are currently performing an (climate) observing system simulation experiment over the 25-year period 2001 to 2025, which involves quasi-realistic modeling of the neutral atmosphere and the ionosphere. We carried out two climate simulations with the general circulation model MAECHAM5 (Middle Atmosphere European Centre/Hamburg Model Version 5) of the MPI-M Hamburg, covering the period 2001–2025: One control run with natural variability only and one run also including anthropogenic forcings due to greenhouse gases, sulfate aerosols, and tropospheric ozone. On the basis of this, we perform quasi-realistic simulations of RO observables for a small GNSS receiver constellation (six satellites), state-of-the-art data processing for atmospheric profiles retrieval, and a statistical analysis of temperature trends in both the “observed” climatology and the “true” climatology. Here we describe the setup of the experiment and results from a test bed study conducted to obtain a basic set of realistic estimates of observational errors (instrument- and retrieval processing-related errors) and sampling errors (due to spatial-temporal undersampling). The test bed results, obtained for a typical summer season and compared to the climatic 2001–2025 trends from the MAECHAM5 simulation including anthropogenic forcing, were found encouraging for performing the full 25-year experiment. They indicated that observational and sampling errors (both contributing about 0.2 K) are consistent with recent estimates of these errors from real RO data and that they should be sufficiently small for monitoring expected temperature trends in the global atmosphere over the next 10 to 20 years in most regions of the upper troposphere and lower stratosphere (UTLS). Inspection of the MAECHAM5 trends in different RO-accessible atmospheric parameters (microwave refractivity and pressure/geopotential height in addition to temperature) indicates complementary climate change sensitivity in different regions of the UTLS so that optimized climate monitoring shall combine information from all climatic key variables retrievable from GNSS RO data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Earth’s global atmospheric electric circuit depends on the upper and lower atmospheric boundaries formed by the ionosphere and the planetary surface. Thunderstorms and electrified rain clouds drive a DC current (∼1 kA) around the circuit, with the current carried by molecular cluster ions; lightning phenomena drive the AC global circuit. The Earth’s near-surface conductivity ranges from 10−7 S m−1 (for poorly conducting rocks) to 10−2 S m−1 (for clay or wet limestone), with a mean value of 3.2 S m−1 for the ocean. Air conductivity inside a thundercloud, and in fair weather regions, depends on location (especially geomagnetic latitude), aerosol pollution and height, and varies from ∼10−14 S m−1 just above the surface to 10−7 S m−1 in the ionosphere at ∼80 km altitude. Ionospheric conductivity is a tensor quantity due to the geomagnetic field, and is determined by parameters such as electron density and electron–neutral particle collision frequency. In the current source regions, point discharge (coronal) currents play an important role below electrified clouds; the solar wind-magnetosphere dynamo and the unipolar dynamo due to the terrestrial rotating dipole moment also apply atmospheric potential differences. Detailed measurements made near the Earth’s surface show that Ohm’s law relates the vertical electric field and current density to air conductivity. Stratospheric balloon measurements launched from Antarctica confirm that the downward current density is ∼1 pA m−2 under fair weather conditions. Fortuitously, a Solar Energetic Particle (SEP) event arrived at Earth during one such balloon flight, changing the observed atmospheric conductivity and electric fields markedly. Recent modelling considers lightning discharge effects on the ionosphere’s electric potential (∼+250 kV with respect to the Earth’s surface) and hence on the fair weather potential gradient (typically ∼130 V m−1 close to the Earth’s surface. We conclude that cloud-to-ground (CG) lightning discharges make only a small contribution to the ionospheric potential, and that sprites (namely, upward lightning above energetic thunderstorms) only affect the global circuit in a miniscule way. We also investigate the effects of mesoscale convective systems on the global circuit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The distribution and variability of water vapor and its links with radiative cooling and latent heating via precipitation are crucial to understanding feedbacks and processes operating within the climate system. Column-integrated water vapor (CWV) and additional variables from the European Centre for Medium-Range Weather Forecasts (ECMWF) 40-year reanalysis (ERA40) are utilized to quantify the spatial and temporal variability in tropical water vapor over the period 1979–2001. The moisture variability is partitioned between dynamical and thermodynamic influences and compared with variations in precipitation provided by the Climate Prediction Center Merged Analysis of Precipitation (CMAP) and the Global Precipitation Climatology Project (GPCP). The spatial distribution of CWV is strongly determined by thermodynamic constraints. Spatial variability in CWV is dominated by changes in the large-scale dynamics, in particular associated with the El Niño–Southern Oscillation (ENSO). Trends in CWV are also dominated by dynamics rather than thermodynamics over the period considered. However, increases in CWV associated with changes in temperature are significant over the equatorial east Pacific when analyzing interannual variability and over the north and northwest Pacific when analyzing trends. Significant positive trends in CWV tend to predominate over the oceans while negative trends in CWV are found over equatorial Africa and Brazil. Links between changes in CWV and vertical motion fields are identified over these regions and also the equatorial Atlantic. However, trends in precipitation are generally incoherent and show little association with the CWV trends. This may in part reflect the inadequacies of the precipitation data sets and reanalysis products when analyzing decadal variability. Though the dynamic component of CWV is a major factor in determining precipitation variability in the tropics, in some regions/seasons the thermodynamic component cancels its effect on precipitation variability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The global atmospheric electrical circuit sustains a vertical current density between the ionosphere and the Earth's surface, the existence of which is well-established from measurements made in fair-weather conditions. In overcast, but non-thunderstorm, non-precipitating conditions, the current travels through the cloud present, despite cloud layers having low electrical conductivity. For extensive layer clouds, this leads to space charge at the upper and lower cloud boundaries. Using a combination of atmospheric electricity and solar radiation measurements at three UK sites, vertical current measurements have been categorised into clear, broken, and overcast cloud conditions. This approach shows that the vertical “fair weather” current is maintained despite the presence of cloud. In fully overcast conditions with thick cloud, the vertical current is reduced compared to thin cloud overcast conditions, associated with the cloud's resistance contributions. Contribution of cloud to the columnar resistance depends both on cloud thickness, and the cloud's height.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The atmosphere's fair weather electric field is a permanent feature, arising from the combination of distant thunderstorms, Earth's conducting surface, a charged ionosphere and cosmic ray ionization. Despite its ubiquity, no fair weather electricity effect on clouds has been hitherto demonstrated. Here we report surface measurements of radiation emitted and scattered by extensive thin continental cloud, which, after ~2 min delay, shows changes closely following the fair weather electric field. For typical fluctuations in the fair weather electric field, changes of about 10% are subsequently induced in the diffuse short-wave radiation. These observations are consistent with enhanced production of large cloud droplets from charging at layer cloud edges.