993 resultados para 141-863A


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trypanosomiasis is caused by Trypanosoma species which affect both human and animal populations and pose a major threat to developing countries. The incidence of animal trypanosomiasis is on the rise. Surra is a type of animal trypanosomiasis, caused by Trypanosoma evansi, and has been included in priority list B of significant diseases by the World Organization of Animal Health (OIE). Control of surra has been a challenge due to the lack of effective drugs and vaccines and emergence of resistance towards existing drugs. Our laboratory has previously implicated Heat shock protein 90 (Hsp90) from protozoan parasites as a potential drug target and successfully demonstrated efficacy of an Hsp90 inhibitor in cell culture as well as a pre-clinical mouse model of trypanosomiasis. This article explores the role of Hsp90 in the Trypanosoma life cycle and its potential as a drug target. It appears plausible that the repertoire of Hsp90 inhibitors available in academia and industry may have value for treatment of surra and other animal trypanosomiasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using a diagrammatic superoperator formalism we calculate optical signals at molecular junctions where a single molecule is coupled to two metal leads which are held at different chemical potentials. The molecule starts in a nonequilibrium steady state whereby it continuously exchanges electrons with the leads with a constant electron flux. Expressions for frequency domain optical signals measured in response to continuous laser fields are derived by expanding the molecular correlation functions in terms of its many-body states. The nonunitary evolution of molecular states is described by the quantum master equation. (C) 2014 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is well known that graphene, by virtue of its pi-cloud delocalization, has a continuum of electronic energy states and thus behaves nearly like a metal. Instances involving quenching of electronic energy excitation in fluorophores placed in the proximity of graphene sheets are well documented. In this paper, we perform theoretical investigations on the broadening of vibrational and electronic transitions in the vicinity of graphene. We find that for CO vibrations in the vicinity of undoped graphene, the broadening at a distance of 5 angstrom is similar to 0.008 cm(-1)((kappa) over tilde = 2, (kappa) over tilde being the effective dielectric constant). In comparison, for electronic transitions, the linewidth is much larger, being of the order of several cm(-1). Also, if the transition dipole were parallel to the graphene sheet, the linewidth would be reduced to half the value for the case where it is perpendicular, an observation which should be easy to check experimentally for electronic transitions. This should be observable for the f - f transitions (which are rather narrow) of Lanthanide complexes placed within a distance of a few nanometers from a graphene sheet. Further the linewidth would have a (distance)(-4) dependence as one varies the distance from graphene. (C) 2014 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rugged energy landscapes find wide applications in diverse fields ranging from astrophysics to protein folding. We study the dependence of diffusion coefficient (D) of a Brownian particle on the distribution width (epsilon) of randomness in a Gaussian random landscape by simulations and theoretical analysis. We first show that the elegant expression of Zwanzig Proc. Natl. Acad. Sci. U.S.A. 85, 2029 (1988)] for D(epsilon) can be reproduced exactly by using the Rosenfeld diffusion-entropy scaling relation. Our simulations show that Zwanzig's expression overestimates D in an uncorrelated Gaussian random lattice - differing by almost an order of magnitude at moderately high ruggedness. The disparity originates from the presence of ``three-site traps'' (TST) on the landscape - which are formed by the presence of deep minima flanked by high barriers on either side. Using mean first passage time formalism, we derive a general expression for the effective diffusion coefficient in the presence of TST, that quantitatively reproduces the simulation results and which reduces to Zwanzig's form only in the limit of infinite spatial correlation. We construct a continuous Gaussian field with inherent correlation to establish the effect of spatial correlation on random walk. The presence of TSTs at large ruggedness (epsilon >> k(B)T) gives rise to an apparent breakdown of ergodicity of the type often encountered in glassy liquids. (C) 2014 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The protein folding funnel paradigm suggests that folding and unfolding proceed as directed diffusion in a multidimensional free energy surface where a multitude of pathways can be traversed during the protein's sojourn from initial to final state. However, finding even a single pathway, with the detail chronicling of intermediates, is an arduous task. In this work we explore the free energy surface of unfolding pathway through umbrella sampling, for a small globular a-helical protein chicken-villin headpiece (HP-36) when the melting of secondary structures is induced by adding DMSO in aqueous solution. We find that the unfolding proceeds through the initial separation or melting of aggregated hydrophobic core that comprises of three phenylalanine residues (Phe7, Phe11, and Phe18). This separation is accompanied by simultaneous melting of the second helix. Unfolding is found to be a multistage process involving crossing of three consecutive minima and two barriers at the initial stage. At a molecular level, Phe18 is observed to reorient itself towards other hydrophobic grooves to stabilize the intermediate states. We identify the configuration of the intermediates and correlate the intermediates with those obtained in our previous works. We also give an estimate of the barriers for different transition states and observe the softening of the barriers with increasing DMSO concentration. We show that higher concentration of DMSO tunes the unfolding pathway by destabilizing the third minimum and stabilizing the second one, indicating the development of a solvent modified, less rugged pathway. The prime outcome of this work is the demonstration that mixed solvents can profoundly transform the nature of the energy landscape and induce unfolding via a modified route. A successful application of Kramer's rate equation correlating the free energy simulation results shows faster rate of unfolding with increasing DMSO concentration. This work perhaps presents the first systematic theoretical study of the effect of a chemical denaturant on the microscopic free energy surface and rates of unfolding of HP-36. (C) 2014 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As the beneficial effects of curcumin have often been reported to be limited to its small concentrations, we have undertaken a study to find the aggregation properties of curcumin in water by varying the number of monomers. Our molecular dynamics simulation results show that the equilibrated structure is always an aggregated state with remarkable structural rearrangements as we vary the number of curcumin monomers from 4 to 16 monomers. We find that the curcumin monomers form clusters in a very definite pattern where they tend to aggregate both in parallel and anti-parallel orientation of the phenyl rings, often seen in the formation of beta-sheet in proteins. A considerable enhancement in the population of parallel alignments is observed with increasing the system size from 12 to 16 curcumin monomers. Due to the prevalence of such parallel alignment for large system size, a more closely packed cluster is formed with maximum number of hydrophobic contacts. We also follow the pathway of cluster growth, in particular the transition from the initial segregated to the final aggregated state. We find the existence of a metastable structural intermediate involving a number of intermediate-sized clusters dispersed in the solution. We have constructed a free energy landscape of aggregation where the metatsable state has been identified. The course of aggregation bears similarity to nucleation and growth in highly metastable state. The final aggregated form remains stable with the total exclusion of water from its sequestered hydrophobic core. We also investigate water structure near the cluster surface along with their orientation. We find that water molecules form a distorted tetrahedral geometry in the 1st solvation layer of the cluster, interacting rather strongly with the hydrophilic groups at the surface of the curcumin. The dynamics of such quasi-bound water molecules near the surface of curcumin cluster is considerably slower than the bulk signifying a restricted motion as often found in protein hydration layer. (C) 2014 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have performed fully atomistic classical molecular dynamics simulations to calculate the effective interaction between two polyamidoamine dendrimers. Using the umbrella sampling technique, we have obtained the potential of mean force (PMF) between the dendrimers and investigated the effects of protonation level and dendrimer size on the PMF. Our results show that the interaction between the dendrimers can be tuned from purely repulsive to partly attractive by changing the protonation level. The PMF profiles are well-fitted by the sum of an exponential and a Gaussian function with the weight of the exponential function dominating over that of the Gaussian function. This observation is in disagreement with the results obtained in previous analytic C. Likos, M. Schmidt, H. Lowen, M. Ballauff, D. Potschke, and P. Lindner, Macromolecules 34, 2914 (2001)] and coarse-grained simulation I. Gotze, H. Harreis, and C. Likos, J. Chem. Phys. 120, 7761 (2004)] studies which predicted the effective interaction to be Gaussian. (C) 2014 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Irregular force fluctuations are seen in most nanotubulation experiments. The dynamics behind their presence has, however, been neither commented upon nor modeled. A simple estimate of the mean energy dissipated in force drops turns out to be several times the thermal energy. This coupled with the rate dependent nature of the deformation reported in several experiments point to a dynamical origin of the serrations. We simplify the whole process of tether formation through a three-stage model of successive deformations of sphere to ellipsoid, neck-formation, and tubule birth and extension. Based on this, we envisage a rate-softening frictional force at the neck that must be overcome before a nanotube can be pulled out. Our minimal model includes elastic and visco-elastic deformation of the vesicle, and has built-in dependence on pull velocity, vesicle radius, and other material parameters, enabling us to capture various kinds of serrated force-extension curves for different parameter choices. Serrations are predicted in the nanotubulation region. Other features of force-extension plots reported in the literature such as a plateauing serrated region beyond a force drop, serrated flow region with a small positive slope, an increase in the elastic threshold with pull velocity, force-extension curves for vesicles with larger radius lying lower than those for smaller radius, are all also predicted by the model. A toy model is introduced to demonstrate that the role of the friction law is limited to inducing stick-slip oscillations in the force, and all other qualitative and quantitative features emerging from the model can only be attributed to other physical mechanisms included in the deformation dynamics of the vesicle. (C) 2014 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pure rotational spectra of the propargyl alcohol dimer and its three deuterium isotopologues have been observed in the 4 to 13 GHz range using a pulsed-nozzle Fourier transform microwave spectrometer. For the parent dimer, a total of 51 transitions could be observed and fitted within experimental uncertainty. For two mono-substituted and one bi-substituted deuterium isotopologues, a total of 14, 17, and 19 transitions were observed, respectively. The observed rotational constants for the parent dimer A = 2321.8335(4) MHz, B = 1150.4774(2) MHz, and C = 1124.8898(2) MHz] are close to those of the most stable structure predicted by ab initio calculations. Spectra of the three deuterated isotopologues and Kraitchman analysis positively confirm this structure. Geometrical parameters and ``Atoms in Molecules'' analysis on the observed structure reveal that the two propargyl alcohol units in the dimer are bound by three different types of hydrogen bonds: O-H center dot center dot center dot O, O-H center dot center dot center dot pi, and C-H center dot center dot center dot pi. To the best of our knowledge, propargyl alcohol seems to be the smallest molecule forming a homodimer with three different points of contact. (C) 2014 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the time of Kirkwood, observed deviations in magnitude of the dielectric constant of aqueous protein solution from that of neat water (similar to 80) and slower decay of polarization have been subjects of enormous interest, controversy, and debate. Most of the common proteins have large permanent dipole moments (often more than 100 D) that can influence structure and dynamics of even distant water molecules, thereby affecting collective polarization fluctuation of the solution, which in turn can significantly alter solution's dielectric constant. Therefore, distance dependence of polarization fluctuation can provide important insight into the nature of biological water. We explore these aspects by studying aqueous solutions of four different proteins of different characteristics and varying sizes, chicken villin headpiece subdomain (HP-36), immunoglobulin binding domain protein G (GB1), hen-egg white lysozyme (LYS), and Myoglobin (MYO). We simulate fairly large systems consisting of single protein molecule and 20000-30000 water molecules (varied according to the protein size), providing a concentration in the range of similar to 2-3 mM. We find that the calculated dielectric constant of the system shows a noticeable increment in all the cases compared to that of neat water. Total dipole moment auto time correlation function of water < dM(W) (0)delta M-W (t) > is found to be sensitive to the nature of the protein. Surprisingly, dipole moment of the protein and total dipole moment of the water molecules are found to be only weakly coupled. Shellwise decomposition of water molecules around protein reveals higher density of first layer compared to the succeeding ones. We also calculate heuristic effective dielectric constant of successive layers and find that the layer adjacent to protein has much lower value (similar to 50). However, progressive layers exhibit successive increment of dielectric constant, finally reaching a value close to that of bulk 4-5 layers away. We also calculate shellwise orientational correlation function and tetrahedral order parameter to understand the local dynamics and structural re-arrangement of water. Theoretical analysis providing simple method for calculation of shellwise local dielectric constant and implication of these findings are elaborately discussed in the present work. (C) 2014 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rich data bearing on the structural and evolutionary principles of protein protein interactions are paving the way to a better understanding of the regulation of function in the cell. This is particularly the case when these interactions are considered in the framework of key pathways. Knowledge of the interactions may provide insights into the mechanisms of crucial `driver' mutations in oncogenesis. They also provide the foundation toward the design of protein protein interfaces and inhibitors that can abrogate their formation or enhance them. The main features to learn from known 3-D structures of protein protein complexes and the extensive literature which analyzes them computationally and experimentally include the interaction details which permit undertaking structure-based drug discovery, the evolution of complexes and their interactions, the consequences of alterations such as post-translational modifications, ligand binding, disease causing mutations, host pathogen interactions, oligomerization, aggregation and the roles of disorder, dynamics, allostery and more to the protein and the cell. This review highlights some of the recent advances in these areas, including design, inhibition and prediction of protein protein complexes. The field is broad, and much work has been carried out in these areas, making it challenging to cover it in its entirety. Much of this is due to the fast increase in the number of molecules whose structures have been determined experimentally and the vast increase in computational power. Here we provide a concise overview. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Scheelite-type MWO4 (M = Ca, Sr, and Ba) nanophosphors were synthesized by the precipitation method. All compounds crystallized in the tetragonal structure with space group 141/a (No. 88). Scherrer's and TEM results revealed that the average crystallite size varies from 32 to 55 nm. FE-SEM illustrate the spherical (CaWO4), bouquet (SrWO4), and fish (BaWO4) like morphologies. PL spectra indicate the broad emission peak maximum at 436 (CaWO4), 440 (SrWO4), and 433 nm (BaWO4) under UV excitation. The calculated CIE color coordinates of MWO4 nanophosphors are close to the commercial BAM and National Television System Committee blue phosphor. The photocatalytic activities of MWO4 were investigated for the degradation of methylene blue dye under UV illumination. At pH 3, BaWO4 nanocatalyst showed 100% dye degradation within 60 min. The photocatalytic activity was in the decreasing order of BaWO4> CaWO4>SrWO4 under both neutral and acidic conditions. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We prove two density theorems for quadrature domains in , . It is shown that quadrature domains are dense in the class of all product domains of the form , where is a smoothly bounded domain satisfying Bell's Condition R and is a smoothly bounded domain and also in the class of all smoothly bounded complete Hartogs domains in C-2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a recent work [U. Harbola, B. K. Agrawalla, and S. Mukamel, J. Chem. Phys. 141, 074107 (2014)], we have presented a superoperator (Liouville space) diagrammatic formulation of spontaneous and stimulated optical signals from current-carrying molecular junctions. We computed the diagrams that contribute to the spontaneous light emission SLE (fluorescence and Raman) signal using a diagrammatic method which clearly distinguishes between the Raman and the fluorescence contributions. We pointed out some discrepancies with the work of Galperin, Ratner and Nitzan (GRN) [M. Galperin, M. A. Ratner and, A. Nitzan, J. Chem. Phys. 130, 144109 (2009)]. In their response [M. Galperin, M. A. Ratner and A. Nitzan, “Comment on‘ Frequency-domain stimulated and spontaneous light emission signals at molecular junctions’” [J. Chem. Phys. 141, 074107 (2014)], J. Chem. Phys. 142, 137101 (2015)] to our work, GRN have argued that there are no differences in the choice of Raman diagrams in both works. Here we reply to their points and show where the differences exist.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Obsessive compulsive symptoms frequently occur in a substantial proportion of patients with schizophrenia. The term schizoobsessive has been proposed to delineate this subgroup of schizophrenia patients who present with obsessive compulsive symptoms/disorder. However, whether this co-occurrence is more than just co-morbidity and represents a distinct subgroup remains controversial. A striking variation is noted across studies examining prevalence of obsessive compulsive symptoms/disorder in schizophrenia patients and their impact on clinical profile of schizophrenia. Hence, in this study, we examined the prevalence of obsessive compulsive symptoms/disorder in a large sample of consecutively hospitalized schizophrenia patients and compared the clinical and functional characteristics of schizophrenia patients with and without obsessive compulsive symptoms/disorder. We evaluated 200 consecutive subjects with the DSM-IV diagnosis of schizophrenia using the Structured Clinical Interview for DSM-IV Axis I disorders, Positive and Negative Syndrome Scale, Yale Brown Obsessive Compulsive Scale, Brown Assessment of Beliefs Scale, Clinical Global Impression-Severity scale, Global Assessment of Functioning Scale, Family Interview for Genetic Studies and World Health Organization Quality of Life scale. The prevalence of obsessive compulsive symptoms in patients with schizophrenia was 24% (n = 48); 37 of them had obsessive compulsive disorder (OCD) and II had obsessive compulsive symptoms not amounting to a clinical diagnosis of OCD (OCS). Schizophrenia patients with OCS/OCD had an earlier age at onset of schizophrenia symptoms, lower positive symptoms score, higher co-morbidity with Axis II disorders, higher occurrence of OCD in family and better quality of life. Findings of the study indicate a higher prevalence of OCS/OCD in schizophrenia. Schizophrenia patients with and without OCS/OCD have comparable clinical profile with few exceptions. High rates of OCD in first degree relatives suggest possible genetic contributions and differences in neurobiology. Finally, evidence to consider schizoobsessive as a distinct diagnostic entity is inconclusive and warrants further studies. (C) 2014 Elsevier Inc. All rights reserved.