998 resultados para 139-856C
Resumo:
A binary mixture of oppositely charged colloidal particles can self-assemble into either a substitutionally ordered or substitutionally disordered crystalline phase depending on the nature and strength of interactions among the particles. An earlier study had mapped out favorable inter-particle interactions for the formation of substitutionally ordered crystalline phases from a fluid phase using Monte Carlo molecular simulations along with the Gibbs-Duhem integration technique. In this paper, those studies are extended to determine the effect of fluid phase composition on formation of substitutionally ordered solid phases.
Resumo:
In this manuscript, rotational spectra of four new isotopologues of the S-H center dot center dot center dot pi bonded C2H4 center dot center dot center dot H2S complex, i.e., C2D4 center dot center dot center dot H2S, C2D4 center dot center dot center dot D2S, C2D4 center dot center dot center dot HDS, and (CCH4)-C-13 center dot center dot center dot H2S have been reported and analyzed. All isotopologues except C2D4 center dot center dot center dot HDS show a four line pattern whereas a doubling of the transition frequencies was observed for C2D4 center dot center dot center dot HDS. These results together with our previous report on the title complex M. Goswami, P. K. Mandal, D. J. Ramdass, and E. Arunan, Chem. Phys. Lett. 393(1-3), 22-27 (2004)] confirm that both subunits (C2H4 and H2S) are involved in large amplitude motions leading to a splitting of each rotational transition to a quartet. Further, the results also confirm that the motions which are responsible for the observed splittings involve both monomers. Molecular symmetry group analysis, considering the interchange of equivalent H atoms in H2S and C2H4 could explain the observed four line pattern and their intensities in the microwave spectrum. In addition, hydride stretching fundamentals of the complex were measured using coherence-converted population transfer Fourier Transform Microwave-infrared (IR-MW double resonance) experiments in the S-H and C-H stretch regions. Changes in the tunneling splittings upon vibrational excitation are consistent with the isotopic dependence of pure rotational transitions. A complexation shift of 2.7-6.5 cm(-1) has been observed in the two fundamental S-H stretching modes of the H2S monomer in the complex. Vibrational pre-dissociation in the bound S-H stretch has been detected whereas the instrument-limited line-shapes in other S-H and C-H stretches indicate slower pre-dissociation rate. Some local perturbations in the vibrational spectra have been observed. Two combination bands have been observed corresponding to both the S-H stretching fundamentals and what appears to be the intermolecular stretching mode at 55 cm(-1). The tunneling splitting involved in the rotation of C2H4 unit has been deduced to be 1.5 GHz from the IR-MW results. In addition, ab initio barrier heights derived for different motions of the monomers support the experimental results and provide further insight into the motions causing the splitting. (C) 2013 AIP Publishing LLC.
Resumo:
The uncertainty in material properties and traffic characterization in the design of flexible pavements has led to significant efforts in recent years to incorporate reliability methods and probabilistic design procedures for the design, rehabilitation, and maintenance of pavements. In the mechanistic-empirical (ME) design of pavements, despite the fact that there are multiple failure modes, the design criteria applied in the majority of analytical pavement design methods guard only against fatigue cracking and subgrade rutting, which are usually considered as independent failure events. This study carries out the reliability analysis for a flexible pavement section for these failure criteria based on the first-order reliability method (FORM) and the second-order reliability method (SORM) techniques and the crude Monte Carlo simulation. Through a sensitivity analysis, the most critical parameter affecting the design reliability for both fatigue and rutting failure criteria was identified as the surface layer thickness. However, reliability analysis in pavement design is most useful if it can be efficiently and accurately applied to components of pavement design and the combination of these components in an overall system analysis. The study shows that for the pavement section considered, there is a high degree of dependence between the two failure modes, and demonstrates that the probability of simultaneous occurrence of failures can be almost as high as the probability of component failures. Thus, the need to consider the system reliability in the pavement analysis is highlighted, and the study indicates that the improvement of pavement performance should be tackled in the light of reducing this undesirable event of simultaneous failure and not merely the consideration of the more critical failure mode. Furthermore, this probability of simultaneous occurrence of failures is seen to increase considerably with small increments in the mean traffic loads, which also results in wider system reliability bounds. The study also advocates the use of narrow bounds to the probability of failure, which provides a better estimate of the probability of failure, as validated from the results obtained from Monte Carlo simulation (MCS).
Resumo:
The current study analyzes the leachate distribution in the Orchard Hills Landfill, Davis Junction, Illinois, using a two-phase flow model to assess the influence of variability in hydraulic conductivity on the effectiveness of the existing leachate recirculation system and its operations through reliability analysis. Numerical modeling, using finite-difference code, is performed with due consideration to the spatial variation of hydraulic conductivity of the municipal solid waste (MSW). The inhomogeneous and anisotropic waste condition is assumed because it is a more realistic representation of the MSW. For the reliability analysis, the landfill is divided into 10 MSW layers with different mean values of vertical and horizontal hydraulic conductivities (decreasing from top to bottom), and the parametric study is performed by taking the coefficients of variation (COVs) as 50, 100, 150, and 200%. Monte Carlo simulations are performed to obtain statistical information (mean and COV) of output parameters of the (1) wetted area of the MSW, (2) maximum induced pore pressure, and (3) leachate outflow. The results of the reliability analysis are used to determine the influence of hydraulic conductivity on the effectiveness of the leachate recirculation and are discussed in the light of a deterministic approach. The study is useful in understanding the efficiency of the leachate recirculation system. (C) 2013 American Society of Civil Engineers.
Resumo:
By applying the lower bound theorem of limit analysis in conjunction with finite elements and nonlinear optimization, the bearing capacity factor N has been computed for a rough strip footing by incorporating pseudostatic horizontal seismic body forces. As compared with different existing approaches, the present analysis is more rigorous, because it does not require an assumption of either the failure mechanism or the variation of the ratio of the shear to the normal stress along the footing-soil interface. The magnitude of N decreases considerably with an increase in the horizontal seismic acceleration coefficient (kh). With an increase in kh, a continuous spread in the extent of the plastic zone toward the direction of the horizontal seismic body force is noted. The results obtained from this paper have been found to compare well with the solutions reported in the literature. (C) 2013 American Society of Civil Engineers.
Resumo:
The dynamics and interactions of edge dislocations in a nearly aligned sheared lamellar mesophase is analysed to provide insights into the relationship between disorder and rheology. First, the mesoscale permeation and momentum equations for the displacement field in the presence of external forces are derived from the model H equations for the concentration and momentum field. The secondary flow generated due to the mean shear around an isolated defect is calculated, and the excess viscosity due to the presence of the defect is determined from the excess energy dissipation due to the secondary flow. The excess viscosity for an isolated defect is found to increase with system size in the cross-stream direction as L-3/2 for an isolated defect, though this divergence is cut-off due to interactions in a defect suspension. As the defects are sheared past each other due to the mean flow, the Peach-Koehler force due to elastic interaction between pairs of defects is found to cause no net displacement relative to each other as they approach from large separation to the distance of closest approach. The equivalent force due to viscous interactions is found to increase the separation for defects of opposite sign, and decrease the separation for defects of same sign. During defect interactions, we find that there is no buckling instability due to dilation of layers for systems of realistic size. However, there is another mechanism, which is the velocity difference generated across a slightly deformed bilayer due to the mean shear, which could result in the creation of new defects. (C) 2013 AIP Publishing LLC.
Resumo:
We present computer simulation study of two-dimensional infrared spectroscopy (2D-IR) of water confined in reverse micelles (RMs) of various sizes. The present study is motivated by the need to understand the altered dynamics of confined water by performing layerwise decomposition of water, with an aim to quantify the relative contributions of different layers water molecules to the calculated 2D-IR spectrum. The 0-1 transition spectra clearly show substantial elongation, due to in-homogeneous broadening and incomplete spectral diffusion, along the diagonal in the surface water layer of different sized RMs. Fitting of the frequency fluctuation correlation functions reveal that the motion of the surface water molecules is sub-diffusive and indicate the constrained nature of their dynamics. This is further supported by two peak nature of the angular analogue of van Hove correlation function. With increasing system size, the water molecules become more diffusive in nature and spectral diffusion almost completes in the central layer of the larger size RMs. Comparisons between experiments and simulations establish the correspondence between the spectral decomposition available in experiments with the spatial decomposition available in simulations. Simulations also allow a quantitative exploration of the relative role of water, sodium ions, and sulfonate head groups in vibrational dephasing. Interestingly, the negative cross correlation between force on oxygen and hydrogen of O-H bond in bulk water significantly decreases in the surface layer of each RM. This negative cross correlation gradually increases in the central water pool with increasing RMs size and this is found to be partly responsible for the faster relaxation rate of water in the central pool. (C) 2013 AIP Publishing LLC.
Resumo:
In aqueous binary mixtures, amphiphilic solutes such as dimethylsulfoxide (DMSO), ethanol, tertbutyl alcohol (TBA), etc., are known to form aggregates (or large clusters) at small to intermediate solute concentrations. These aggregates are transient in nature. Although the system remains homogeneous on macroscopic length and time scales, the microheterogeneous aggregation may profoundly affect the properties of the mixture in several distinct ways, particularly if the survival times of the aggregates are longer than density relaxation times of the binary liquid. Here we propose a theoretical scheme to quantify the lifetime and thus the stability of these microheterogeneous clusters, and apply the scheme to calculate the same for water-ethanol, water-DMSO, and water-TBA mixtures. We show that the lifetime of these clusters can range from less than a picosecond (ps) for ethanol clusters to few tens of ps for DMSO and TBA clusters. This helps explaining the absence of a strong composition dependent anomaly in water-ethanol mixtures but the presence of the same in water-DMSO and water-TBA mixtures. (C) 2013 AIP Publishing LLC.
Resumo:
Metallacarboranes are promising towards realizing room temperature hydrogen storage media because of the presence of both transition metal and carbon atoms. In metallacarborane clusters, the transition metal adsorbs hydrogen molecules and carbon can link these clusters to form metal organic framework, which can serve as a complete storage medium. Using first principles density functional calculations, we chalk out the underlying principles of designing an efficient metallacarborane based hydrogen storage media. The storage capacity of hydrogen depends upon the number of available transition metal d-orbitals, number of carbons, and dopant atoms in the cluster. These factors control the amount of charge transfer from metal to the cluster, thereby affecting the number of adsorbed hydrogen molecules. This correlation between the charge transfer and storage capacity is general in nature, and can be applied to designing efficient hydrogen storage systems. Following this strategy, a search for the best metallacarborane was carried out in which Sc based monocarborane was found to be the most promising H-2 sorbent material with a 9 wt.% of reversible storage at ambient pressure and temperature. (C) 2013 AIP Publishing LLC.
Resumo:
Establishing the relative orientation of the two benzene molecules in the dimer has remained an enigmatic challenge. Consensus has narrowed the choice of structures to either a T-shape, that may be tilted, or a parallel displaced arrangement, but the relatively small energy differences makes identifying the global minimum difficult. Here we report an ab initio Car-Parrinello Molecular Dynamics based metadynamics computation of the free-energy landscape of the benzene dimer. Our calculations show that although competing structures may be isoenergetic, free energy always favors a tilted T-shape geometry at all temperatures where the bound benzene dimer exist. (C) 2013 AIP Publishing LLC.
Resumo:
Solid-solid collapse transition in open framework structures is ubiquitous in nature. The real difficulty in understanding detailed microscopic aspects of such transitions in molecular systems arises from the interplay between different energy and length scales involved in molecular systems, often mediated through a solvent. In this work we employ Monte-Carlo simulation to study the collapse transition in a model molecular system interacting via both isotropic as well as anisotropic interactions having different length and energy scales. The model we use is known as Mercedes-Benz (MB), which, for a specific set of parameters, sustains two solid phases: honeycomb and oblique. In order to study the temperature induced collapse transition, we start with a metastable honeycomb solid and induce transition by increasing temperature. High density oblique solid so formed has two characteristic length scales corresponding to isotropic and anisotropic parts of interaction potential. Contrary to the common belief and classical nucleation theory, interestingly, we find linear strip-like nucleating clusters having significantly different order and average coordination number than the bulk stable phase. In the early stage of growth, the cluster grows as a linear strip, followed by branched and ring-like strips. The geometry of growing cluster is a consequence of the delicate balance between two types of interactions, which enables the dominance of stabilizing energy over destabilizing surface energy. The nucleus of stable oblique phase is wetted by intermediate order particles, which minimizes the surface free energy. In the case of pressure induced transition at low temperature the collapsed state is a disordered solid. The disordered solid phase has diverse local quasi-stable structures along with oblique-solid like domains. (C) 2013 AIP Publishing LLC.
Resumo:
p53 is a well known tumor suppressor protein that plays a critical role in cell cycle arrest and apoptosis. It has several isoforms which are produced by transcriptional and posttranscriptional regulatory mechanisms. p53 mRNA has been demonstrated to be translated into two isoforms, full-length p53 (FL-p53) and a truncated isoform N-p53 by the use of alternative translation initiation sites. The mechanism of translation regulation of these two isoforms was further elucidated by the discovery of IRES elements in the p53 mRNA. These two IRESs were shown to regulate the translation of p53 and N-p53 in a distinct cell-cycle phase-dependent manner. This review focuses on the current understanding of the regulation of p53 IRES mediated translation and the role of cis and trans acting factors that influence expression of p53 isoforms. (C) 2013 John Wiley & Sons, Ltd.
Resumo:
Donor-acceptor-donor-structured thiophene derivative-based conducting polymer poly(7,9-dithiophene-2yl-8H-cyclopentaa]acenaphthalene-8-one) was chemically synthesized. This polymer was used to modify both glassy-carbon and carbon-paste electrode, which was used to detect lead(II) ions present in water in the range of 1 mM to 0.1 mu M. Cyclic voltammetry confirms the formation of the co-ordination complex between the soft segment of polymer and the dissolved lead ion. Anodic stripping voltammetry was carried out by the modified electrode to determine the lower limit of detection of dissolved lead(II) species in the solution. Differential adsorptive stripping and impedance measurements were also conducted to find the lowest possible response of the as-synthesized polymer to lead(II) ion in water. The electrochemical performance of the modified electrodes at different pH (4, 7 and 9) environments was carried out by stripping voltammetry, to get optimum sensitivity and stability under these conditions. Finally, interference analysis was carried out to detect the modified electrode's sensitivity towards lead ion affinity in water.
Resumo:
Undoped and Tb3+ (1-10 mol%) doped CeO2 nanophosphors were synthesized by low temperature solution combustion method. The combustion derived products were well studied by Powder X-ray diffraction (PXRD), Scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and Ultraviolet visible (UV-Vis) characterizations. The thermoluminescence (TL) glow curves of CeO2: Tb3+ (1-10 mol%) nanophosphors exposed to c source (60Co) for various doses were discussed for the first time. Two TL glow peaks recorded at 182 and 262 degrees C respectively. The TL intensity at 262 degrees C peak increases linearly in the dose range 0.5-7 kGy. Further, this peak was well defined, intense and glow peak structure does not change with c-dose as a result, it was quite useful in TL dosimetry of ionizing radiations. The kinetic parameters associated with the glow peak were estimated using Chen's half width method. The photoluminescence emission (PLE) spectra consists of characteristic peaks at 544 and 655 nm which were attributed to D-5(4) -> F-7(5) and D-5(4) -> F-7(2) transitions of Tb3+ ions. The optimal concentration of Tb3+ ions was found to be 7 mol%. The color co-ordinates of CeO2: Tb3+ (1-10 mol%) located in green region. Hence, this phosphor was quite useful for display applications. (C) 2013 Elsevier B. V. All rights reserved.
Resumo:
A series of resonant column tests have been performed in the torsional mode of vibration to assess the effect of saturation, starting from the near dry state to the fully saturated state, on the damping ratio of sands corresponding to the threshold strain level. Tests were carried out on three different gradations of sand for various combinations of relative density and effective confining pressure. For fine sands, a certain optimum degree of saturation exists at which the damping ratio minimizes; it is known that a decrease in Sr from a fully saturated state leads to a continuous increase in the matric suction. With an increase in the relative density, the optimum degree of saturation for fine sand increases marginally from 1.38 to 1.49%, but does not show any dependency on the effective confining pressure. In contrast, the minimum values of the damping ratio for medium and coarse sands are found to always correspond to the near dry state. The damping ratio decreases continuously with increases in relative density and effective confining pressure. The threshold strain level has been found to decrease continuously with increases in relative density and effective confining pressure. (C) 2013 American Society of Civil Engineers.