997 resultados para Émile Borel
Resumo:
The purpose of this project was to investigate the potential for collecting and using data from mobile terrestrial laser scanning (MTLS) technology that would reduce the need for traditional survey methods for the development of highway improvement projects at the Iowa Department of Transportation (Iowa DOT). The primary interest in investigating mobile scanning technology is to minimize the exposure of field surveyors to dangerous high volume traffic situations. Issues investigated were cost, timeframe, accuracy, contracting specifications, data capture extents, data extraction capabilities and data storage issues associated with mobile scanning. The project area selected for evaluation was the I-35/IA 92 interchange in Warren County, Iowa. This project covers approximately one mile of I-35, one mile of IA 92, 4 interchange ramps, and bridges within these limits. Delivered LAS and image files for this project totaled almost 31GB. There is nearly a 6-fold increase in the size of the scan data after post-processing. Camera data, when enabled, produced approximately 900MB of imagery data per mile using a 2- camera, 5 megapixel system. A comparison was done between 1823 points on the pavement that were surveyed by Iowa DOT staff using a total station and the same points generated through the MTLS process. The data acquired through the MTLS and data processing met the Iowa DOT specifications for engineering survey. A list of benefits and challenges is included in the detailed report. With the success of this project, it is anticipate[d] that additional projects will be scanned for the Iowa DOT for use in the development of highway improvement projects.
Resumo:
The Iowa DOT reviewed Corps of Engineers accounting records to determine the costs of operating and maintaining a 300 mile section of the Mississippi River. This document reviews the details the study.
Resumo:
The foamed asphalt concept has been around since the 1950's. Rising oil prices have created a renewed interest in this process. The purpose of this project was to construct an asphalt base using the foamed asphalt process and to evaluate its performance. A 4.2 mile length of Muscatine County road A-91 was selected for the research project. Asphalt contents of 4.5% and 5.5%, moisture contents of 70% and 90% of optimum, and fog, single chip, and double chip seal coats were used in various combinations to lay 9 test sections of 4-inch foamed asphalt base. After five years of service and evaluation, several conclusions can be made concerning the performance of the foamed asphalt bases: (1) the foamed asphalt process can work as shown by the excellent performance of Sections 2 and 3; (2) foamed asphalt base requires a well compacted subgrade and a road profile suitable for good drainage of water--test section failures were mostly due to a poor subgrade and subsurface moisture; and (3) when the base is placed in two or more lifts, extreme care must be exercised to insure adequate bonding is achieved between lifts. Any future research with foamed asphalt should include various asphalt depths in order to determine a thickness/strength relationship for foamed asphalt.
Resumo:
A significant amount of waste limestone screenings is produced during aggregate production. This waste material cannot be used in highway construction because it does not meet current highway specifications. The purpose of this research was to determine if a waste limestone screenings/emulsion mix could be used to construct a base capable of supporting local traffic. A 1.27 mile (2.04 km) section of roadway in Linn County was selected for this research. The road was divided into seven sections. Six of the sections were used to test 4 in. (100 mm) and 6 in. (150 mm) compacted base thicknesses containing 2.5%, 3.5%, and 4.5% residual asphalt contents. The seventh section was a control section containing untreated waste limestone screenings. This research on emulsion stabilized limestone screenings supports the following conclusions: (1) A low maintenance roadway can be produced using a seal coat surface on 6 in. (150 mm) of stabilized limestone screenings with 4.5% asphalt cement; (2) A 6 in. (150 mm) emulsion stabilized base with less than 3.5% asphalt cement does not produce a satisfactory low cost maintenance roadway; (3) A 4 in. (100 mm) emulsion stabilized base does not produce a satisfactory low cost maintenance roadway; and (4) A 2 in. (50 mm) asphalt concrete surface would be necessary on many roads to provide a low maintenance roadway using emulsion stabilized limestone screenings.
Resumo:
This project consisted of slipforming a 4-inch thick econocrete subbase on a 6-mile section of US 63. The project location extends south from one mile south of Denver, Iowa to Black Hawk County Road C-66 and consisted of the reconstruction and new construction of a divided four-lane facility. The econocrete was placed 27.3 feet wide in a single pass. Fly ash was used in this field study to replace 30, 45 and 60 percent of the portland cement in three portland cement econocrete base paving mixes. The three mixes contained 300, 350 and 400 pounds of cementitious material per cubic yard. Two Class "C" ashes from Iowa approved sources were used. The ash was substituted on the basis of one pound of ash for each pound of cement removed. The work was done October 6-29, 1987 and May 25-June 9, 1988. The twelve subbase mixes were placed in sections 2500 to 3000 feet in length on both the north and southbound roadways. Compressive strengths of all mixes were determined at 3 and 28 days of age. Flexural strengths of all mixes were determined at 7 and 14 days. In all cases strengths were adequate. The freeze/thaw durability of the econocrete mixes used was reduced by increased fly ash levels but remained above acceptable limits. The test results demonstrate the feasibility of producing econocrete with satisfactory properties even using fly ash at substitution rates up to 45 percent.
Resumo:
The objective of this project was to determine if any of several cutback and emulsified asphalt plant mixed and road mixed overlays had the ability to resist thermal cracking at low temperatures without inducing shoving and/or ruttinq at high temperatures. A 2.6 mile section of Osceola County road A-34 and a 7.0 mile section of A-46 were divided into 14 test sections of various lengths. After six years, results show an MC-3000 asphalt cutback cold mix can reduce the amount of reflective cracking when compared to an AC-5 hot mix. This can be done without inducing high temperature related problems. Cold road mixing can be effective in reducing cracking on low volume roads. However, more experience is required if the full benefits of road mixing are to be realized.
Resumo:
Research project HR-231, "Special Surface Preparation Prior to Bituminous Overlay", was initiated in 1982 to study the effectiveness of three different crack fillers in extending pavement life. In particular, this project was designed to determine if any of the fillers could substantially reduce the rate of subsurface deterioration and general deterioration of an asphalt pavement at crack locations. This project also sought to determine the effects of the various crack filling procedures on different thicknesses of bituminous overlays. The three fillers, a fly ash slurry, an emulsion, and a rubberized asphalt mixture, were used along with a control section with no crack filler material on a 2.5 mile section of Cerro Gordo Trunk Route S-25 south of the town of Thornton. This report discusses the construction and performance of each filler material and makes recommendations concerning future use of any of the materials used.
Resumo:
In view of the energy, environmental, and economic advantages of the foamed asphalt process using local aggregates in cold mixes and the promising results from Research Project HR-212, a 4.2-mile section of county road in Muscatine County was built with foamed asphalt and local aggregates during August-September 1983. Extensive laboratory evaluation was carried out on five plant mixes representing foamed mixes used in the nine test sections, a laboratory prepared foamed mix, and a laboratory prepared hot mix similar to Plant Mix 1. The foamed mixes were compacted, cured under 15 curing conditions and tested for bulk specific gravity, Marshall stability at 77° F and at 140° F, cured moisture content, resilient modulus and effects of moisture damage due to freeze-thaw cycles, water soaking, and vacuum saturation. In addition, four sets of 83 core samples were taken at 1 to 15 months and tested for moisture content, specific gravity, Marshall stability, and resilient modulus. In summary, the test road has performed satisfactorily for almost two years. The few early construction problems encountered were to be expected for experimental projects dealing with new materials and technologies. Overall results to date are encouraging and foamed asphalt mixes have proved to have the potential as a viable base material in areas where marginal aggregates are available. It is hoped and expected that performance evaluation of the test sections will be continued and that more foamed asphalt trial projects will be constructed and monitored so that experiences and findings from this project can be verified and mix design criteria can be gradually established. For future foamed asphalt projects it is recommended that anti-stripping additives, such as hydrated lime, be added in view of the potential moisture susceptibility of foamed mixes observed in the laboratory evaluation.